
Demonstrating the Viability of Automatically Generated
User Interfaces

ABSTRACT
We conducted two studies that demonstrate automatically
generated interfaces can be more usable than interfaces
created by human designers. The first study shows that us-
ers of automatically generated interfaces for two all-in-one
printers were twice as fast and four times more successful at
completing tasks than users of the manufacturer’s original
interfaces. The second study shows that algorithms for
automatically generating consistent user interfaces can pro-
vide additional benefits by allowing users to perform tasks
with a new interface twice as fast as users of an interface
generated without consideration for consistency. These two
studies demonstrate that automatic interface generation is
now viable and especially desirable where users will benefit
from individualized interfaces or where human designers
are constrained by cost and other factors.

Author Keywords
Automatic interface generation, handheld computers, per-
sonal digital assistants, mobile phone, personal universal
controller (PUC), consistency, Pebbles

ACM Classification Keywords
D.2.2 Design Tools and Techniques: User interfaces –
automatic generation. H.5.2. User Interfaces: Graphical
user interfaces (GUIs).

INTRODUCTION
Researchers have been producing systems for automatically
generating user interfaces for more than two decades. Two
initial motivations for this work were to better separate the
user interface component from the input/output layer and to
help programmers without any design training produce
high-quality user interfaces. With the development of better

interface abstractions and the increased availability of
trained interface designers, these techniques for automati-
cally generating interfaces were generally not adopted [7].

Recently, however, research into automatic generation has
experienced a renaissance with several new systems offer-
ing improved generation algorithms and new user customi-
zation features. This work is motivated in several ways:

• The increasing diversity of computing devices provid-
ing a user interface, from handheld computers and tab-
let PCs to mobile phones and wristwatches, requires
multiple user interfaces to be constructed for each ap-
plication. Automatic generation can allow applications
to be quickly ported to different platforms [2, 6, 8].

• For certain devices, especially office appliances and
consumer electronics, it is economical for manufactur-
ers to include many complex functions but expensive to
provide a high-quality user interface [1]. One solution
is to automatically generate the appliance interface on
another device, such as a handheld computer or mobile
phone, which can provide a higher quality user inter-
face for all of the appliance’s complex functions [8].

• There are many users with different backgrounds,
goals, and capabilities using today’s user interfaces,
and each user may benefit if his or her interfaces are
specifically designed take individual needs into account
[2-4, 10]. It is impractical for human designers to create
a different interface for each individual user, but an
automatic interface generator can easily do this. For ex-
ample, users with tremor could benefit from interfaces
designed to support their particular type of tremor [4].

In order for new work in automatic generation to be
adopted, it will need to address the challenges of previous
systems. In particular, Myers et al. [7] said that previous
systems were not adopted in part because “generated inter-
faces were generally not as good as those that could be cre-
ated with conventional programming techniques” [7].

Submitted for Publication

In this paper, we present two user studies that examined the
usability of interfaces automatically generated by the Per-
sonal Universal Controller (PUC) system [8] (see Figure 1).
The first study examined the usability of the generated in-

 1

a. HP printer

without consistency
b. Canon printer

without consistency
 c. HP printer consistent

with Canon printer
d. Canon printer consistent

with HP printer

Figure 1. PocketPC interfaces generated by the Personal Universal Controller (PUC) for the two all-in-one printers discussed in this paper.

terfaces compared to existing human-designed interfaces
for the same functionality, with the hypothesis that interface
quality is no longer a limiting factor for automatically gen-
erated interfaces. The results were that users of the auto-
matically generated interfaces were twice as fast and four
times more successful than users of the existing interfaces
for a set of eight independent tasks with varying difficulty.

The second study examined the PUC’s Uniform layer,
which automatically generates interfaces that are consistent
with the user’s previous experience [10]. Our hypothesis
was that automatically generated interfaces can provide
benefits beyond those shown in the first study through user
customizations that would be impractical for human de-
signers to provide. In our study, we first trained users on the
same eight tasks from the first study using one interface.
After users could successfully perform these tasks, we
asked them to perform the same tasks on a second different
interface with similar functionality. We found that users are
twice as fast when the second interface is generated by the
PUC to be consistent with the first interface, as compared to
when the second interface is generated with the consistency
algorithms disabled.

Both user studies compare interfaces for two different all-
in-one printer appliances. We focus on appliance interfaces
because the PUC system is designed specifically for mov-
ing the interfaces from computerized appliances to a hand-
held device, such as a PDA or mobile phone. The two all-
in-one printers we used are a Hewlett-Packard (HP) Pho-
tosmart 2610 with a high-quality interface including a color
LCD and a Canon PIXMA MP780 with a few more features
and an interface that turned out to be harder to learn than
the HP. These two represented the top-of-the-line consumer
models from these manufacturers and the most complex all-
in-printers available for home use at the time of their pur-

chase. We chose the all-in-one printers as our appliances in
these studies for several reasons:

• Complex appliances are typically more difficult to use
than trivial ones and we wanted to test the PUC with
appliances that would be challenging for its generation
algorithms. We found that all-in-printers were at least
as complicated, if not more so, than many of the other
appliance types that have been explored by the devel-
opers of the PUC system (containing 85 variables and
commands for the HP and 134 for the Canon). The two
we chose have several different main functions, includ-
ing copying, faxing, scanning, and photo manipulation,
that all must be represented in the user interface. They
also have many special configuration options for each
of the main functions, which make the initial setup
process difficult and time-consuming.

• Two simple copier interfaces were used previously to
demonstrate the PUC’s consistency features [10], and
we wanted to understand whether the PUC’s consis-
tency algorithms would work with more realistic appli-
ances with similar functionality.

• Although it was not possible for the PUC to actually
control the all-in-one printers, simulating this control
was easy to achieve by configuring a computer to print
documents on the printers with the correct appearance
based on the task the user was currently performing.
This resulted in a realistic setting for users of the PUC
interfaces, which allows for better comparisons of the
PUC interfaces with the actual appliance interfaces.

The existing manufacturers’ interfaces from both printers
were used for the comparisons conducted in the studies.
The generated interfaces produced by the PUC system were
presented on a Microsoft PocketPC device (see Figure 1).

This paper begins with a brief review of the extensive re-
search on automatically generating user interfaces, focusing
on recent approaches examining how automatic generation
can provide benefits that would not be practical for human
designers to provide. We continue with an overview of the
PUC system, followed by an in-depth description of our
studies and their results.

RELATED WORK
Research in interface generation has a long history dating
back to some of the earliest User Interface Management
Systems (UIMSs) developed in the mid-80’s, such as
COUSIN [5]. The original goal of these systems was to
automate the design of the user interface so that program-
mers, who were typically not trained in interface design,
could produce applications with high quality user inter-
faces. This work led to creation of systems in the late 80’s
and early 90’s, such as UIDE [16], ITS [19], Jade [18], and
Humanoid [17], which required designers to specify models
of their applications that could then be used to automati-
cally generate a user interface. The generated interfaces
could generally be modified by a trained interface designer
to produce a final user interface. These interfaces were
sometimes called model-based user interfaces because of
the models underlying their creation.

These early model-based systems had several drawbacks.
Most notably, creating the models needed for generating an
interface was a very abstract and time-consuming process.
The modeling languages had a steep learning curve and
often the time needed to create the models exceeded the
time needed to manually program a user interface by hand.
Finally, automatic generation of the user interface was a
very difficult task and often resulted in low quality inter-
faces [7]. Most systems moved to designer-guided proc-
esses rather than use a fully automatic approach.

Two motivations suggested that continued research into
model-based approaches might be beneficial:

Very large scale user interfaces assembled with existing
techniques are difficult to implement and later modify, and
detailed models of the user interface can help organize and
partially automate the implementation process. The models
can then be used to help designers re-visit the interface and
make modifications for future versions. Mobi-D [14] and
TERESA [6] are two notable approaches in this area.

A recent need for device-independent interfaces has also
motivated new research in model-based user interfaces and
specifically on fully automated generation. Work in this
area has also begun to explore applications of automatic
generation to create interfaces that would not be practical
through other approaches. For example, the PUC’s consis-
tency feature [10] generates interfaces that are personally
consistent with each user’s previous experience.

Xweb [12] enables users to interact with services through
several different modalities and client styles, including
speech, desktop computers, and pen-based wall displays.

The wide-range of interfaces is supported through the
automatic generation of interfaces, which are built from an
XML description of a service’s capabilities.

ICrafter [13] is designed to distribute interfaces for control-
ling services to any interactive device that wishes to display
those interfaces. As with Xweb, specifications of the ser-
vices are written in XML and interfaces can be displayed on
multiple devices in multiple modalities. ICrafter’s innova-
tion is its ability to aggregate the user interfaces for multi-
ple services together based on a set of programming
interfaces which identify services that can be used together.

The Ubiquitous Interactor [11] also generates interfaces for
services, but provides service provider’s with the unique
ability to supply hints about how the generated interface
should appear. This gives the service providers control over
the generated interfaces and allows them to include brand
marks and interactions.

Most automatic interface generation systems, including the
PUC, use a rule-based approach to create user interfaces.
SUPPLE [2] instead uses a numeric optimization algorithm
to find the optimal choice and arrangement of controls
based on a cost function. The developers of SUPPLE have
experimented with including a number of different factors
in this cost function. Common factors to all of their func-
tions are the cost of navigation between any two controls
and the cost of using a particular control for a function.
Additional costs have been included based on the common
tasks that a user performs [2], consistency between inter-
faces for the same application generated on different plat-
forms [3], and the physical abilities of the user (for assistive
technology) [4].

All of these systems automatically generate interfaces, but
to our knowledge no user studies have been conducted to
evaluate the resulting interfaces. The closest reported study
is of SUPPLE [2], which asked subjects without any interface
design training to produce interfaces for a presentation
room control panel. The developers then showed that
SUPPLE could generate similar versions of each of these
interfaces by varying the task information provided to the
interface generator. The interface used in this study had
only a few simple functions however, and users’ perform-
ance on the SUPPLE interfaces was not measured or com-
pared with any other interfaces.

BACKGROUND: THE PUC SYSTEM
The PUC system generates interfaces from specifications of
appliance functionality using a rule-based approach [8]. In
the system, handheld devices and appliances communicate
over wireless networks using a peer-to-peer approach.
When the user wishes to control an appliance, her handheld
device connects to the appliance, downloads a functional
specification from that appliance, and then generates an
interface. The user can then use that interface to both re-
motely control the appliance and receive feedback on the
appliance’s state. Currently, graphical interface generators

 3

a. HP Photosmart 2610 b. Canon PIXMA MP780

Figure 2. The all-in-one printers used in our studies, with a larger view of the built-in user interfaces.

using the PUC framework have been implemented for the
PocketPC, Microsoft’s Smartphone platform, and desktop
computers. A speech interface generator was also imple-
mented using Universal Speech Interface techniques [15].
The PUC specification language is designed to be easy-to-
use, concise, and contain the information most important
for generating user interfaces.

The PUC system is able to control real appliances, and
adapters have been created to connect the PUC to an Audio-
phase stereo, a Sony camcorder, a UPnP camera, and sev-
eral lighting systems. To test the completeness of the PUC
appliance specification language, specifications have been
written for many other appliances that could not be con-
trolled directly. Over 30 different specifications have been
written for appliances as diverse as VCRs, desktop applica-
tions like PowerPoint, a car navigation system, and an ele-
vator. Simulators have been built for some of the appliances
that could not be directly controlled, and a generic simula-
tor has been built which enables Wizard-of-Oz-style simu-
lation for the remaining specifications.

Recently, the PUC system has been augmented with a new
feature called Uniform [10]. Uniform adds additional rules
to the PUC that ensure personal consistency, which means
that new interfaces are generated to be consistent with pre-
vious interfaces the user has seen in the past. While these
algorithms ensure consistency, they also preserve the us-
ability of any unique functions of the new appliance. This
choice may affect the consistency of the generated interface
in some cases, such as when the new appliance has a similar
function that is more complex than the previous appliance.
In this case, the complex functionality will be preserved,
but the function may be moved, within the interface’s struc-
ture, to a location similar to the previous appliance. Uni-
form was tested qualitatively with two copiers and several
complex VCRs, but no studies quantitatively evaluating
user performance were conducted until the current paper.

STUDIES OF AUTOMATIC GENERATION
Our discussion of the two user studies starts with a descrip-
tion of the interfaces we compared and the common proto-
col used for both studies. This is followed by sections
presenting and discussing the results for each of the studies.

Interfaces
The studies compare PUC-generated interfaces with the
manufacturers’ human-designed interfaces for the same
appliances, and compare PUC-generated interfaces with
and without consistency for the two different printers. The
manufacturers’ interfaces for the two all-one-printers used
are shown in Figure 2.

PUC specifications of both all-in-one printers were needed
in order for the PUC to generate interfaces. The first author
wrote the initial specification for the Canon printer and the
second author wrote the initial specification for the HP
printer. Different writers were used for the two specifica-
tions because these specifications are used for the consis-
tency user study. We wanted the specifications to contain
similarities and differences that might be found in a realistic
scenario where the specifications were written separately by
different manufacturers.

The specifications were also written using an approach that
we would expect actual specification writers to take. Writ-
ers were generally faithful to the design of the actual appli-
ances, but also took advantage of the features of the PUC
specification language. For example, the language allows
for multiple labels for each function and we added extra
labels with further detail where necessary. The PUC lan-
guage also calls for authors to include as much organiza-
tional detail as possible in order to support generation on
devices with small screens, and our authors followed this
guideline. The initial specifications were tested with the
interface generators to ensure correctness and went through
several iterations before they were deemed of high enough

quality to be used for the studies. Note that this testing is
similar to debugging a program or iteratively testing a user
interface and is necessary to ensure that no functions are
forgotten, understandable labels are used, etc. The advan-
tage of the PUC system is that these improvements are only
needed once and will migrate properly to interfaces gener-
ated on any platform.

Note also that both specifications included all of the fea-
tures of their appliances, even the features not tested.
Therefore, the resulting generated user interfaces are com-
plete in that they represent all of the features that could be
accessed from the appliance’s own user interfaces. The
specification for the HP consists of 1924 lines of XML con-
taining 85 variables and commands, and the specification
for the Canon is 2949 lines of XML containing 134 vari-
ables and commands.

The PUC’s consistency algorithms also need information
about the similarities between specifications [10]. An auto-
matic systems was used to generate an initial set of map-
pings between the two all-in-one printer specifications. The
first author then revised the resulting mappings to produce
the complete set used in our consistency study.

The two specifications and the mappings between them
were then used by the PUC to produce the four different
interfaces used in our studies: PUC HP without consistency,
PUC Canon without consistency, PUC HP generated to be
consistent with the PUC Canon interface, and PUC Canon
generated to be consistent with the HP (see Figure 1). Com-
bined with the built-in interfaces for the two printers, this
results in the six total interfaces used in our studies.

Protocol
The subjects using the PUC interfaces first had a short tuto-
rial on the interface of the PocketPC handheld device. This
was necessary because the PUC’s design assumes that users
will be familiar with the device they are using, and the
PocketPC has several interface quirks that can frustrate
users who are not aware of them (e.g. the Ok button in dia-
log boxes is located in the title bar at the top of the screen).
Since the intention of the PUC is to work on people’s own
personal devices, it is reasonable to expect that they will be
familiar with the user interface of the device itself.

All subjects performed a block of eight tasks on one of the
six interfaces just described. After completing all of the
tasks, the subjects received instruction on the quickest
method of performing each of the tasks they had just per-
formed. After receiving instruction on a task, subjects were
required to perform the task again until they did not make
errors. Additional instruction was available for a task as
needed by the subject. Once the instruction period was
completed successfully, the subject performed a second
block of the same eight tasks on a different interface for the
other all-in-one printer.

During both task blocks, users were required to figure out
how to perform each task on their own and were not pro-

vided with a user manual or any other instruction on how to
use the printer interfaces. Users were allotted a maximum
of 5 minutes to perform each task and were not allowed to
move on to the next task until they succeeded or the maxi-
mum period was complete. We chose 5 minutes based on
several pilot studies that suggested that most subjects would
finish within that window or else would never succeed. We
recorded the time that it took subjects to complete each
task. If a subject did not finish within the allotted period,
we recorded his or her completion time as 5 minutes and
marked the task as not being completed.

Our protocol has two independent variables: the type of
interfaces that a subject used and the order in which the
subject used the two all-in-one appliances. Three different
configurations of interface type were used in our studies:

• Built-in: One built-in interface followed by the other
built-in interface (e.g. HP followed by Canon).

• AutoGen: PUC interface without consistency for one
appliance (e.g., HP) followed by the PUC interface
without consistency for the other (e.g., Canon).

• Consistent AutoGen: PUC interface without consis-
tency for one appliance (e.g., HP) followed by the PUC
interface for the other appliance (e.g., Canon) generated
to be consistent with the first interface (e.g., HP).

The Consistent AutoGen configuration is designed to fulfill
the assumption of the PUC’s consistency algorithms, which
assume that users will receive a benefit from consistency
when they encounter a new device because they are familiar
with a previous interface.

These three configurations allow us to test both usability
and consistency. Usability is tested by comparing the Built-
in configuration with either of the others. Consistency is
tested by comparing the AutoGen and Consistent AutoGen
configurations. To test each of these configurations with
both of the possible orderings (HP followed by Canon and
vice versa) we use a 3x2 between-subjects study design. A
within-subjects design is not possible because we must
carefully control learning to compare performance for both
the usability and consistency studies.

Tasks
We chose eight tasks for subjects to perform during each
block of the study. The tasks were chosen to be realistic for
an all-in-one printer, cover a wide range of difficulties, and
be as independent from each other as possible (so success
or failure on one task would not affect subsequent tasks).
The last point was especially important, because we wanted
to minimize the possibility that a subject might notice an
element used in a future task while working on an earlier
task. We also tried to minimize this effect by presenting the
next task description only after subjects had completed their
previous task; however, this does not prevent subjects
working on their second block from remembering the tasks
from the first block.

 5

The tasks we used, in the order they were always presented
to subjects, are listed below. We chose not to vary the order
of tasks for each subject so that whatever learning effects
might exist between the tasks, despite our best efforts to
eliminate such effects, would be the same for each subject.
The task wording is paraphrased for brevity:

1. Send a fax to the number stored in the third speed dial.

2. Configure the fax function so that it will always redial
a number that was busy.

3. Configure the fax function so that any document re-
ceived that is larger than the default paper size will be
resized to fit the default.

4. Configure the fax function so that it will only print out
an error report when it has a problem receiving a fax.

5. Make two black-and-white copies of the document that
has already been placed on the scanner of the all-in-one
printer.

6. Imagine you find the copies too dark. Improve this by
changing one setting of the device.

7. Given a page with a picture, determine how to produce
one page with several instances of the same picture re-
peated.

8. The device remembers the current date and time. De-
termine where in the interface these values can be
changed (but changing them is not required).

We were careful not to use language that favored any of the
user interfaces being tested. In some cases this was easy
because all interfaces used the same terminology. In other
cases we used words that did not appear in any of the inter-
faces. We also used example documents, rather than lan-
guage, to demonstrate the goal of task 7.

Participants
Forty-eight subjects, twenty-eight male and twenty female,
volunteered for the study through a centralized sign-up web
page managed by our organization. Most subjects were stu-
dents at the local universities and had an average age of 25
and a median age of 23. We also had 3 subjects older than
40 years. Subjects were paid $15 for their time, which var-
ied from about forty minutes to an hour and a half depend-
ing on the configuration of interfaces being used. Subjects
were randomly assigned to conditions.

Evaluation of Usability
To evaluate the usability of the PUC interfaces, we com-
pared the task completion times and failures for the Built-in
condition with the other two conditions. We are primarily
interested in the data from the first block in each condition
because the second block is influenced differently in each
condition by the subjects’ experiences in the first block.

Results
Figure 3 shows the average completion time for each of the
tasks on each appliance, comparing the Built-In condition
with the other two conditions combined (which we will
refer to as the PUC condition). Note that data from the
AutoGen and Consistent AutoGen conditions can be com-
bined here because the same interfaces are used in the first
block of both conditions. To compare completion times and
failures in the first block, we conducted several one-way
analyses of variance (ANOVA). For all of these analyses,
n=8 in the Built-In condition and n=16 in the PUC condi-
tion. Table 1 shows data in more detail with analyses com-
paring user performance for each task.

On the HP appliance, subjects were significantly faster for
total task completion time using the PUC interface (F1,22 =
12.11, p < 0.002), completing all of the tasks in less than
half the time (M=5:54 for the PUC interface vs. M=13:12
for the built-in interface). Subjects also failed significantly
less often using the PUC interface (F1,22 = 5.69, p < 0.03),
with a fifth as many failures using the PUC interface as
compared to the built-in interface (2 total failures for all
users vs. 9).

Subjects overall had more difficulty using the Canon inter-
faces as compared to the HP interfaces across all conditions
(F1,46 = 6.25, p < 0.02), but we still see the same significant
benefits for the PUC interface over the built-in interface.
Again, subjects were significantly faster using the PUC
(F1,22 = 21.88, p < 0.001), with average total completion
times of 9:32 for the PUC interface and 20:33 for the built-
in interface (again about half the time). Subjects also failed
significantly less often using the PUC (F1,22 = 6.57, p <
0.02), with 10 total failures for all users over all tasks using
the PUC interface and 16 total failures using the built-in
interface (about 1/3 fewer failures on average).

We also performed the same analyses comparing the Built-
In condition and the combined PUC condition for the data
from the second block of tasks. All of these analyses were
significant and matched the results for the first block, ex-
cept for the number of failures over all tasks for the HP
printer. In this case there were too few failures to make this
analysis possible: zero failures for all 16 subjects using a
PUC HP interface and only one failure for the 8 subjects
using the built-in HP interface.

Discussion of Usability
The results show that users perform faster over all eight
tasks using the PUC interfaces as compared to the printers’
built-in interfaces.

For the Canon printer, the PUC interfaces are significantly
faster for nearly all of individual tasks: tasks 3 and 8 are
marginally significant and only task 2, automatically re-
dialing a busy number, was not found to be different at all.

Task 2 was also the task most failed by users of the PUC
interfaces by a wide margin. We believe task 2 was particu-
larly hard for users because the Canon printer has many

Figure 3. Results of the first block of tasks, showing the Built-In condition compared with the other two for each appliance.

 Tasks
 1 2 3 4 5 6 7 8 Total

Time HP Built-In 02:16 02:12* 02:02* 00:51 00:23 00:53 02:31* 02:04* 13:12*

 PUC 01:49 00:18* 00:40* 00:39 00:22 00:35 01:18* 00:13* 05:54*

 Canon Built-In 04:08* 03:23 03:38† 03:48* 00:30* 00:56* 02:28* 01:42† 20:33*

 PUC 01:12* 02:34 02:15† 01:17* 00:12* 00:16* 01:13* 00:34† 09:32*

Failures HP Built-In 2 2 2 0 0 1 1 1 9*

 PUC 2 0 0 0 0 0 0 0 2*

 Canon Built-In 3* 3 5* 3† 0 0 1 1 16*

 PUC 0* 5 2* 1† 0 0 1 1 10*

Table 1. Average completion time and total failure data for the first block of tasks. The PUC condition is the combination of the AutoGen and
Consistent AutoGen conditions. N = 8 for the Built-In condition and N = 16 for the PUC condition. * indicates a significant difference between the
Built-In and PUC conditions for that appliance (p < 0.05), and † indicates a marginally significant difference (p < 0.1). Completion times and total

failures were compared with a one-way analysis variance and failures per task were compared with a one-tailed Fisher’s Exact Test.

Figure 4. Results of the second block of tasks, showing the AutoGen condition compared to the Consistent AutoGen condition for each appliance.

 Tasks
 1 2 3 4 5 6 7 8 Total

Time HP AutoGen 00:29 00:43* 00:50 00:29 00:08 00:22* 01:45† 00:08 04:54
 Consistent 00:20 00:17 00:20 00:25 00:07 00:04 00:30 00:07 02:10*

 Built-In 01:38* 01:23* 00:37† 00:39† 00:18* 00:16* 03:19* 00:45* 08:55*

 Canon AutoGen 00:28 02:54* 01:33† 00:44 00:09 00:23* 01:25 00:09 07:45
 Consistent 00:38 00:12 00:22 01:03 00:05 00:08 01:05 00:06 03:39*

 Built-In 03:15* 02:24* 02:42* 02:14 00:11† 01:42* 02:42† 00:35* 15:44*

Failures HP AutoGen 0 0 0 0 0 0 0 0 0
 Consistent 0 0 0 0 0 0 0 0 0
 Built-In 0 0 0 0 0 0 1 0 1
 Canon AutoGen 0 2 1 0 0 0 0 0 3
 Consistent 0 0 0 0 0 0 1 0 1
 Built-In 4* 2 3 2 0 2 2 0 15*

Table 2. Average completion time and total failure data for the second block of tasks. N = 8 for all conditions. * indicates a significant difference
between that row’s condition and the Consistent AutoGen condition for that appliance (p < 0.05), and † indicates a marginally significant difference

(p < 0.1). Completion times and total failures were compared with a one-way analysis variance and failures per task were compared with a
one-tailed Fisher’s Exact Test.

 7

configuration features for sending and receiving faxes,
which are complex, seemingly overlap with unrelated func-
tions, and use language that is difficult to understand. These
functions were difficult to represent cleanly in the PUC
specification language and this may have carried their com-
plexity through to the generated interfaces.

There are fewer individual tasks on the HP printer for
which the PUC interface was significantly faster than the
built-in interface: only tasks 2, 4, 7, and 8. We believe this
is because the HP printer already has a well-designed inter-
face and seemed to perform well, especially for the easier
tasks. The tasks where the PUC interfaces excel are gener-
ally the more difficult tasks, like tasks 2 and 3, which re-
quire the users to find obscure settings deep in the interface.

We chose the five minute maximum completion time with a
goal of limiting failures to between 5-10% of the total tasks.
In this data there were 48 subjects performing 8 tasks each
for 384 total tasks, and 37 failures were recorded. This
gives a 9.6% failure rate, which is high but still within our
goal range. Since the time measurements were cut off at 5
minutes, one might worry that this biased the results. How-
ever, more than 70% of the failures are found in the Built-In
condition. This suggests that our results, which already
show the Built-In condition to be slower overall, are likely
to be correct since allowing more time would have only
made that condition slower.

This study of usability, at least for the first block of tasks,
compares the performance of novice users. There is then a
question of whether the PUC would be equally successful
for expert users. As users become experts, they are less
likely to make mistakes, which would probably benefit the
harder-to-use Built-In appliance interfaces more than the
PUC interfaces. However, fewer steps are required to navi-
gate to and use most functions in the PUC interfaces. Fur-
thermore, the PUC interfaces provide more visual context
for the user’s current location in the interface. We believe
that these features would allow users to become experts
with the PUC interface faster than the Built-In interfaces,
and the results of the second study suggest this may be true.

Evaluation of Consistency
To evaluate consistency, we compare the completion times
of interfaces in the AutoGen and Consistent AutoGen con-
ditions for the second block of tasks. We also compare the
Built-In condition to the Consistent AutoGen condition, to
see how consistency might further improve today’s appli-
ance interfaces.

Results
Figure 4 shows the average completion times for each task
in the second block for the AutoGen and Consistent Auto-
Gen conditions. Table 2 shows the same data in more detail
and includes the Built-In condition and failure data for all
the conditions. Again, we use one-way ANOVAs to com-
pare the completion times of the various conditions. We do
not discuss failures here because nearly all subjects were

able to complete all their tasks in the AutoGen and Consis-
tent AutoGen conditions (results of the analyses of failures
are shown in Table 2).

On the HP appliance, subjects were significantly faster for
total task completion time using the consistent PUC inter-
face compared to the normal PUC interface (F1,14 = 10.01, p
< 0.007) and the built-in interface (F1,14 = 64.48, p < 0.001).
The total completion time for the consistent PUC interface
was on average more than twice as fast as the normal PUC
interface (M=2:10 vs. M=4:54) and more than four times
faster than the built-in interface (M=2:10 vs. M=8:55).

Subjects were also significantly faster using the consistent
PUC interface for the Canon printer, both compared with
the normal PUC interface (F1,14 = 7.60, p < 0.02) and the
built-in interface (F1,14 = 16.89, p < 0.002). The average
total completion time for the consistent PUC interface was
again more than twice as fast as the normal PUC interface
(M=3:39 vs. M=7:45) and more than four times faster on
average than the built-in interface (M=3:39 vs. M=15:44).

We also compared the total completion times for the two
blocks of task for each of the three conditions. Neither the
Built-In (F1,30 = 3.24, p < 0.09) or AutoGen (F1,30 = 2.46, p
< 0.14) conditions were significantly different from the first
block to the second, although the Built-In condition is mar-
ginally significant and the AutoGen condition may be
trending in that direction. The Consistent AutoGen condi-
tion is significantly different from the first block to the sec-
ond (F1,30 = 10.45, p < 0.004).

Discussion of Consistency
The results show that users perform faster over all eight
tasks using the consistent interfaces as compared to either
of the other interfaces. Much of this effect for both appli-
ances is due to four tasks: 2, 3, 6, and 7. This was expected,
because the normal PUC interfaces for these appliances
were already consistent for tasks 1 and 8, and thus did not
benefit from any change in the consistent interfaces. We
had hoped to see consistency effects for the remaining
tasks, but other factors seem to have affected tasks 4 and 5.

The change made to ensure consistency for task 5 (copying)
involved changing the placement of the copy and cancel
buttons on one screen (see Figure 1). Apparently the visual
search for the new button placement did not affect subjects’
speed compared to the normal PUC interfaces.

One change was made to ensure consistency for task 4
(changing the fax error printing). The function needed for
this task is located with other fax configuration functions,
which are located in different places on the two appliances:
in the fax mode on the HP and in the setup section of the
Canon interface. The change for consistency performed by
the PUC is to move all the configuration functions to the
location where the user originally saw them. From observa-
tions of subjects’ actions, it appeared that this manipulation
worked in the studies. Unfortunately, the error reporting
function was also different between the two appliances in a

way that the PUC’s consistency system could not manipu-
late. When using the HP interface made to be consistent
with the Canon interface, users needed time to understand
how the functions were different before they could make
the correct change. When using the Canon interface consis-
tent with the HP interface, the interface generator made the
unfortunate choice of placing the needed functions in a dia-
log box accessible by pressing a button. The button to open
the dialog was placed next to several other buttons, which
distracted subjects from the button they needed to find.

For tasks 2 and 6 we see a significant benefit for consis-
tency for both appliances. Tasks 3 and 7 both have a mar-
ginally significant benefit for consistency on just one
appliance (task 3 on the HP and task 7 on the Canon). Simi-
lar to task 4, both tasks 3 and 7 are slightly different on the
two appliances in ways that the PUC’s consistency system
cannot change. We believe this means that subjects were
not able to leverage all of their previous knowledge and had
to spend some of their time thinking about how the appli-
ances worked, thus slowing them down.

It is important to note that there are no situations where the
PUC’s consistency algorithms make the interface signifi-
cantly worse for users, even for task 4 on the Canon inter-
face generated to be consistent with the HP. The
consistency system is able to provide benefits when there
are similarities between the appliances and it does not hurt
the user when there are differences.

A question to ask is whether the benefits that appear to be
from consistency could be due to some other factor in the
generation process. We do not believe this is likely, because
the rules added for consistent interface generation only
make changes to the new interface based on differences
with a previous interface that the user has seen. These rules
do not perform other modifications that might improve the
user interface independent of consistency.

DISCUSSION
These two studies together have shown that the PUC can
generate interfaces that exceed the usability of the manufac-
turers’ own interfaces. Using automatic generation to create
appliance interfaces allows flexibility in the design of the
interface, which allows interfaces to be modified for each
particular user. The consistency feature that we studied here
is one example, and our second study showed that consis-
tency can be beneficial to users. Manufacturers may object
to consistency however, because branding may be removed
from interfaces and, worse still, branding from a competitor
may be added in its place. Our position is that branding
which affects the usability of an appliance, such as custom
labels for certain functions or particular sets of steps needed
to complete particular tasks, is not good for the user and the
consistency system should be allowed to modify them.
However, branding marks, such as company names, logos,
etc., should be preserved appropriately. Support for brand-
ing marks and consistency of those marks is a feature that
may be added to the PUC system in the future.

An important question is: what allows the PUC to generate
interfaces that are better than the built-in interfaces on the
appliances? And what would be needed to improve the
built-in interfaces? We believe PUC interfaces are better
than the appliance interfaces for many reasons. First, the
PUC does not use any overlapping controls. All buttons,
sliders, etc. presented in a PUC interface are used for only
one function. In contrast, most appliances overlap multiple
functions on their buttons. For example, both printer inter-
faces provide a number of multi-purpose buttons on their
control panel, including directional pads, ok buttons, and
number pads (see Figure 2), whose behavior changes de-
pending upon the function selected through the printer’s
menu. This was a particular problem for the manufacturer’s
interface on the Canon, which has many modes in which
certain buttons cannot be used and for which there is no
feedback. Users must experiment to determine which but-
tons can be pressed in which situations. The PUC addresses
the feedback problem by graying-out controls that are not
currently available.

The PUC’s screen allows for longer and better labels to
shown for each function. The screen also allows for a two-
dimensional layout that can give clues to the organization
of the interface. For example, the tab control allows users to
see immediately that there are multiple groups of controls
and what those groups are. Also, the functions displayed in
the main portion of any given screen are grouped by func-
tionality, which decreases the number of functions on any
one screen and may make the interface easier to parse.

In order to improve the built-in interfaces to same usability
as the PUC, manufacturers would probably need to invest in
larger screens for their appliances. These screens would
allow the organization of the interface to be clearer, and
hopefully eliminate some of the need for multi-purpose
buttons. Any physical buttons that are not always functional
should have indicator lights that show when the button can
be pressed. Many problems, such as poor labels, could be
addressed with basic user-centered iterative design.

The question remains whether it is economical for manufac-
turers to make these improvements. Screens and indicator
lights for buttons could add substantial manufacturing cost
to an appliance that already has a low profit margin. Al-
though usability is becoming more of a marketing point, it
is still not clear that consumers value it over price except in
a few instances (e.g. the iPod). We believe that the PUC
could be an excellent solution for appliance manufacturers
that currently find themselves in this situation.

The studies presented here do have some limitations. We
used only one type of appliance, all-in-one printers, and
only tested two instances of this type. As discussed earlier,
we believe that the all-in-one printers we chose are repre-
sentative of complex appliances as a whole. They also re-
quire the use of many of the PUC specification language’s
most advanced features, such as lists and Smart Templates
[9]. Although we only used two all-in-one printers, we did

 9

carefully choose them to both be complex and representa-
tive of different common interface styles. We also chose the
HP in part because it had, in our estimation, the best inter-
face of any all-in-one printer available.

Interface quality was a critical problem for previous auto-
matic generation technologies, but there were other issues
as well. In particular, two important problems were the
need for developers to learn a new language for specifying
the interface and the lack of predictability of the generated
interfaces [7]. The PUC addresses both of these issues. Pre-
viously reported authoring studies have shown that the PUC
specification language is easy to learn and use: new users
with no previous knowledge were able to learn the language
in about 1.5 hours and produce a specification for a low-
cost VCR in about 6 hours [10]. Predictability is less of an
issue for the PUC, because interfaces are generated for end
users rather than designers. PUC interface generation is
designed to be very stable however, meaning that the PUC
will always generate the same output given the same inputs.

The results of our studies show that the PUC can generate
usable appliance interfaces, but what about for other kinds
of user interfaces? It would probably be beneficial to have
features, like personal consistency, built into all of our user
interfaces. Currently, the PUC could be used to generate
any interface that does not use direct manipulation, such as
a painting application, and does not involve a substantial
amount of structured data, such as a calendaring system.
The PUC has been used to generate partial interfaces for
some desktop applications, such as PowerPoint. Others [2]
have used their automatic generators to create interfaces for
ubiquitous computing applications, and the consistency
mechanism might be useful in these situations as well. Even
applications for which an interface cannot be automatically
generated, it could still take advantage of some of the bene-
fits described here, provided that the application shipped
with a model that could be used to help automatically mod-
ify the hand-designed interface for each user. Developing
systems capable of automatically modifying user interfaces
seems like a promising direction for future work.

CONCLUSION
The results of the two studies in this paper show that inter-
faces can be automatically generated which are more usable
and provide personal consistency. This suggests two impli-
cations for the future of user interface design and research.
For design, it suggests that automatic design should be con-
sidered in products where interfaces may be constrained by
external factors or individual user customization may have
substantial benefits. For research, it suggests that an impor-
tant direction for future work is developing new techniques
that use automatic generation to create interfaces that are
customized to each individual.

ACKNOWLEDGMENTS

REFERENCES
1. Brouwer-Janse, M.D., Bennett, R.W., Endo, T., van Nes, F.L.,

Strubbe, H.J., and Gentner, D.R. Interfaces for consumer products:
"how to camouflage the computer?" in CHI:Human factors in comput-
ing systems. 1992: 287-290.

2. Gajos, K., Weld, D. SUPPLE: Automatically Generating User Inter-
faces, in Intelligent User Interfaces. 2004: 93-100.

3. Gajos, K., Wu, A., and Weld, D.S. Cross-Device Consistency in
Automatically Generated User Interfaces, in Proceedings of the 2nd
Workshop on Multi-User and Ubiquitous User Interfaces. 2005: 7-8.

4. Gajos, K.Z., Long, J.J., and Weld, D.S. Automatically Generating
Custom User Interfaces for Users With Physical Disabilities, in
ASSETS. 2006: To appear.

5. Hayes, P.J., Szekely, P.A., and Lerner, R.A. Design Alternatives for
User Interface Management Systems Based on Experience with
COUSIN, in Proceedings SIGCHI: Human Factors in Computing Sys-
tems. 1985: 169-175.

6. Mori, G., Paterno, F., and Santoro, C., Design and Development of
Multidevice User Interfaces through Multiple Logical Descriptions.
IEEE Transactions on Software Engineering, 2004. 30(8): 1-14.

7. Myers, B.A., Hudson, S.E., and Pausch, R., Past, Present and Future of
User Interface Software Tools. ACM Transactions on Computer Hu-
man Interaction, 2000. 7(1): 3-28.

8. Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris, T.K.,
Rosenfeld, R., and Pignol, M. Generating Remote Control Interfaces
for Complex Appliances, in UIST. 2002: 161-170.

9. Nichols, J., Myers, B.A., and Litwack, K. Improving Automatic Inter-
face Generation with Smart Templates, in Intelligent User Interfaces.
2004: 286-288.

10. Nichols, J., Myers, B.A., and Rothrock, B. UNIFORM: Automatically
Generating Consistent Remote Control User Interfaces, in Proceedings
of CHI. 2006: 611-620.

11. Nylander, S., Bylund, M., and Waern, A. The Ubiquitous Interactor -
Device Independent Access to Mobile Services, in Computer-Aided
Design of User Interfaces (CADUI). 2004: 271-282.

12. Olsen Jr., D.R., Jefferies, S., Nielsen, T., Moyes, W., and Fredrickson,
P. Cross-modal Interaction using Xweb, in Proceedings of UIST.
2000: 191-200.

13. Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P., and T.Winograd.
ICrafter: A service framework for ubiquitous computing environ-
ments, in UBICOMP 2001. 2001: 56-75.

14. Puerta, A.R., A Model-Based Interface Development Environment.
IEEE Software, 1997. 14(4): 41-47.

15. Rosenfeld, R., Olsen, D., and Rudnicky, A., Universal Speech Inter-
faces. ACM interactions, 2001. VIII(6): 34-44.

16. Sukaviriya, P., Foley, J.D., and Griffith, T. A Second Generation User
Interface Design Environment: The Model and The Runtime Architec-
ture, in Proceedings of INTERCHI. 1993: 375-382.

17. Szekely, P., Luo, P., and Neches, R. Facilitating the Exploration of
Interface Design Alternatives: The HUMANOID Model of Interface
Design, in Proceedings of SIGCHI. 1992: 507-515.

18. Vander Zanden, B. and Myers, B.A. Automatic, Look-and-Feel Inde-
pendent Dialog Creation for Graphical User Interfaces, in Proceedings
SIGCHI. 1990: 27-34.

19. Wiecha, C., Bennett, W., Boies, S., Gould, J., and Greene, S., ITS: A
Tool for Rapidly Developing Interactive Applications. ACM Transac-
tions on Information Systems, 1990. 8(3): 204-236.

We present the first usability studies showing that auto-
matically generated user interfaces can be superior to hu-
man-designed interfaces and provide additional benefits not
practical to provide in human-designed interfaces.

 11

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	BACKGROUND: THE PUC SYSTEM
	STUDIES OF AUTOMATIC GENERATION
	Interfaces
	Protocol
	Tasks

	Participants
	Evaluation of Usability
	Results
	Discussion of Usability

	Evaluation of Consistency
	Results
	Discussion of Consistency

	DISCUSSION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

