
UNIFORM: Automatically Generating Consistent Remote
Control User Interfaces

Jeffrey Nichols, Brad A. Myers, Brandon Rothrock
Human Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

{jeffreyn, bam, rothrock}@cs.cmu.edu
http://www.cs.cmu.edu/~jeffreyn/uniform/

ABSTRACT
A problem with many of today’s appliance interfaces is that
they are inconsistent. For example, the procedure for setting
the time on alarm clocks and VCRs differs, even among
different models made by the same manufacturer. Finding
particular functions can also be a challenge, because appli-
ances often organize their features differently. This paper
presents a system, called Uniform, which approaches this
problem by automatically generating remote control inter-
faces that take into account previous interfaces that the user
has seen during the generation process. Uniform is able to
automatically identify similarities between different devices
and users may specify additional similarities. The similarity
information allows the interface generator to use the same
type of controls for similar functions, place similar func-
tions so that they can be found with the same navigation
steps, and create interfaces that have a similar visual ap-
pearance.

Author Keywords
Automatic interface generation, consistency, familiarity,
handheld computers, personal digital assistants, mobile
phones, personal universal controller (PUC), Pebbles

ACM Classification Keywords
D.2.2 Design Tools and Techniques: User interfaces –
automatic generation. H5.2. User Interfaces: Graphical user
interfaces (GUIs).

INTRODUCTION
The number and diversity of computerized appliances in
our homes and offices is greatly increasing. Even basic in-
teractive elements, such as light switches, are being aug-

mented with processing capability, which allows a formerly
simple appliance to have complex behavior and even be
controlled wirelessly. A challenge for consumers is to learn
how to use all of these new computerized devices, espe-
cially when appliances of the same type often have substan-
tially different user interfaces [3]. A common problem
when traveling, for example, is being stumped by the user
interface for setting the alarm on the clocks in hotel rooms,
even though people may not have trouble setting their own
alarm clocks at home.

Appliance interfaces could be more usable if they were
consistent [3], meaning that users could take their knowl-
edge of an appliance they have used in the past and apply it
to a new appliance with similar capabilities. Unfortunately,
this is not simply a problem of representing identical func-
tions in the same way. Many appliances have similar func-
tions with a few extra features. For example, the user may
be familiar with a copier with only one kind of stapling, and
then be confronted with a new copier that can staple on any
corner. How might additional functionality be presented to
the user while still providing an interface that is consistent
with the old one?

This paper presents Uniform, Using Novel Interfaces For
Operating Remotes that Match, a system that automatically
generates appliance interfaces that are personally consis-
tent, meaning that the interfaces generated for each user are
consistent with that particular user’s past interface experi-
ences (see Figure 1). Uniform attempts to use similar repre-
sentations for the same function, including substituting pre-
vious labels for similar functions. If two appliances share
many of the same functions, Uniform will also try to create
a consistent organization so that users can navigate in much
the same way on both appliances. For appliances that share
nearly all of the same functions, Uniform will also attempt
to generate interfaces with a similar visual appearance.

The personalized aspect of Uniform means that different
users may see different interfaces for the same appliance
depending on their interface history. Our architecture al-
lows for users to change their consistency profile if they
prefer the interaction style of a different appliance. It is
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2006, April 22-28, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

 a. Complex Copier
 Without Consistency

 b. Simple Copier
 Without Consistency

 c. Complex Copier
 Consistent with Simple Copier

 d. Simple Copier
 Consistent with Complex Copier

Figure 1. User interfaces generated by Uniform for a complex and simple copier without and with consistency.

a. Mitsubishi DVCR
Without Consistency

b. Samsung DVD-VCR
Without Consistency

c. Samsung DVD-VCR
Consistent with Mitsubishi DVCR

Figure 2. User interfaces generated by Uniform for a Mitsubishi DVCR and a Samsung DVD-VCR without consistency and the
Samsung DVD-VCR generated to be consistent with the Mitsubishi DVCR. Note that the clock functions are located under the
Status tab for the Mitsubishi DVCR, under Setup for the Samsung DVD-VCR, and in a new Status tab in the consistent interface.
Also note that Controls and Timed Recordings from the DVCR are located under the VCR tab on the Samsung DVD-VCR.

even possible to choose a different representation for a par-
ticular function without affecting where that function is
placed in the user interface.

Of course, Uniform cannot modify the physical interfaces
on existing appliances. Instead users interact with appli-
ances through remote control interfaces presented on a
handheld computer, such as a PDA or mobile phone. Using
a handheld has several benefits:

• The handheld provides a consistent way to interact with
all electronics, and allows Uniform to keep track of
every remote control interface that the user has seen.

• The handheld provides a consistent platform for interac-
tion, including a standard UI toolkit and a set of user in-
terface guidelines.

• Handhelds have rich interface hardware that would not
be economical to put on every appliance, such as color
LCDs, touch-sensitive screens, and text-entry technolo-
gies. This hardware can make the creation of high-
quality appliance interfaces easier.

Uniform is implemented on top of our Personal Universal
Controller (PUC) system [8], which generates remote con-
trol interfaces for handhelds and connects to appliances.
The PUC specification language defines the functional and
organizational representations of appliances.

In this paper, we start by putting Uniform in context with
other systems that have addressed user interface consis-
tency. A key requirement is the ability to find similarities
between PUC appliance specifications, and our design is
informed by two studies on the variability found in appli-
ance specifications. In the first study, we compare specifi-
cations of three different VCRs written by the same author
to understand how specifications can vary between appli-
ances. The second study compares several specifications for
the same appliance written by paid subjects to understand
how specification authors can affect the design of a specifi-
cation. We use our studies and previous work in interface
consistency to establish a set of requirements for creating
consistent interfaces.

Based on these requirements, we designed and implemented
Uniform. Uniform is made up of a rule-based system to
gather similarity information automatically by comparing
new specifications to the set of specifications already seen,
a knowledge base that stores both automatically-inferred
and user-specified mappings, and a set of interface genera-
tion rules that ensure consistency by inspecting the mapping
information and making changes to both the abstract and
concrete interfaces during generation.

Uniform has been tested with specifications for copiers (see
Figure 1) and VCRs (see Figure 2) on the PocketPC, mobile
phone, and desktop platforms. Although copiers and VCRs
are a subset of the appliances that exist today, our experi-
ence from the PUC project suggests that these appliances,
especially VCRs, may be representative of the most com-
plex appliances. The issues we have experienced with
VCRs have carried over to many other appliances, such as
car navigation systems, DVD players, and others.

RELATED WORK
Consistency has been a subject of research for the user in-
terface community for many years, and there has been
much debate about what consistency is. According to
Grudin, “a two-day workshop of 15 experts was unable to
produce a definition of consistency” [4]. Reisner said that
consistency is loosely defined as “doing similar things in
similar ways” and that inconsistency occurs when “the de-
signer and the competent user employ different assignment
rules” [12].

A number of methods have been developed to help ensure
interface consistency. Platform interface guidelines and
toolkits, like those developed by Apple for the Macintosh,
help designers know how to make their applications consis-
tent with others on the same platform. Usually these guide-
lines work best for common functions, such as defining a
standard menu structure that makes it easy to open and save
files and access clipboard functions. More general consis-
tency guidelines have been proposed, such as those de-
scribed by Nielsen [10]. These include maxims such as “the
same information should be presented in the same location
on all screens.” Another process for maintaining consis-
tency is called “design languages” [13], which are used by
designers to ensure that common features and branding are
shared across a family of products.

Systems have addressed user interface consistency in two
different areas: evaluation of consistency and generation of
consistent user interfaces. Sherlock [6] and GLEAN [5] are
two examples of systems that address evaluation of consis-
tency. Sherlock uses a heuristic approach to evaluate task-
independent qualities of user interfaces for consistency.
GLEAN makes predictions about human performance on a
user interface based on a GOMSL model, which can accu-
rately predict transfer times between tasks and find consis-
tency problems between similar tasks. Uniform borrows
some of Sherlock’s heuristic techniques, such as maintain-

ing the use of similar labels, but does not use a model with
enough power to employ GLEAN’s evaluation techniques.

ITS, SUPPLE, and DiamondHelp are all systems that ad-
dress the consistency of user interfaces with automatic de-
sign. The ITS system [17] was successful in producing con-
sistent interfaces across a family of applications (such as all
the displays for a World’s Fair) and for multiple versions of
the same application. Interfaces were generated using a
rule-based approach, and consistency resulted because the
rules applied the same interaction technique in every place
where the same condition was found. Note that although
Uniform does achieve some consistency by using the same
generation rules for each interface, it cannot rely on the
underlying appliance models being the same. Appliances of
the same type may have substantially different underlying
models, and one of Uniform’s contributions is finding simi-
larities between underlying models and creating consistency
based upon these similarities.

SUPPLE [1] automatically generates layouts for user inter-
faces using an optimization approach to choose controls and
their arrangement. Some initial research has been conducted
on adapting SUPPLE to support the creation of consistent
user interfaces for the same application across different
platforms [2]. Like ITS, SUPPLE cannot create consistent
interfaces if the underlying appliance model differs.

DiamondHelp [14] attempts to address the consistency
problem for consumer electronics devices by combining a
task-model based approach with a direct-manipulation in-
terface. While one of DiamondHelp’s goals is to provide
consistency, the current system relies on designers to create
the direct-manipulation portions of the interface and for
each appliance to supply its own task model. DiamondHelp
does not provide a way to search for possible inconsisten-
cies across devices or to automatically adjust the interfaces
to help the user transfer knowledge between interfaces.

Software engineering researchers have also been addressing
the issue of behavioral equivalence for some time, for ap-
plications such as finding equivalent code fragments and
simulation models [18]. There are two main differences
between this work and Uniform. First, the primitives in the
software engineering models are known to be equivalent in
advance, which reduces the problem to finding whether the
models have the same structure. Uniform must determine
whether its primitives (functions) are equivalent and also
deal with the problem of functions that are similar but not
equivalent. Second, the software engineering models are
designed to analyze the order in which operations occur,
which is not required by PUC specifications or Uniform.
This work may be applicable, however, to systems that use
task models as their basis for interface generation.

SPECIFICATION STUDIES
We started work on Uniform by studying how inconsis-
tency can arise in the user interfaces created by our target
platform: the PUC. The PUC interface generator uses a

rule-based process that is guaranteed to produce the same
interface given the same appliance specification, so any
inconsistencies arising in the interface will be due to differ-
ences in the specifications of two similar appliances. In
order to understand how specifications can differ, we con-
ducted two studies to investigate the following questions:

• How can specifications vary for different appliances that
share similar functions?

• How can specifications vary for different authors?

These studies focus on specifications for VCRs, which in
our experience are among the most complicated appliances
to specify.

Background: PUC Specification Language
We start with some background on the PUC specification
language. The functions of an appliance are represented by
state variables and commands. State variables have primi-
tive types that define the data they contain, such as integer,
string, or enumeration. The interface generators infer from
the type the operations that are possible on the state vari-
able, so it is not required that a command be supplied for
the common manipulations of the state variable. Commands
can be used to specify manipulations that cannot be inferred
directly from a variable’s type. One example of a command
is the seek function for a radio station. The station itself
might be represented as a variable, but seek cannot be in-
ferred from the variable because the controller cannot know
in advance what the next radio station with good reception
will be. After the seek command is invoked, the appliance
can change the radio station variable’s value as appropriate.
Uniform uses state variables and commands as the basic
elements of the mappings that describe the similarities be-
tween appliance functions.

Organization is specified in the PUC language via a hierar-
chy called the group tree. Variables and commands can be
placed anywhere in the hierarchy, not just at the leaves. The
hierarchy is used for structuring the interface and making
layout decisions.

Human-readable labels are also an important part of the
specification language. The PUC specification language
supports different form factors with a generic structure
called a label dictionary. Each dictionary may contain mul-
tiple labels of different types and lengths, many of which
will be plain text, but can also be pronunciations, icons, etc.
A label dictionary is specified everywhere that a label is
needed. State variables and commands must have labels, for
example, and groups should also be given labels. Label
dictionaries are particularly important for Uniform, because
they are the best source of information that can help iden-
tify similarities.

Study 1: Differences Among Appliances
Our first study addressed the question of how specifications
can vary for different appliances with similar functions by
examining specifications written for three different VCRs.

Two of the VCRs were complicated with many features, a
Mitsubishi HD-HS2000U Digital VCR and a Samsung
DVD-V1000 DVD-VCR combo-player, and the final VCR
was the cheapest model that we could find at our local Best
Buy store: a Panasonic PV-V4525S. We recruited an expert
specification author, the first author of this paper, to write
these specifications so that we could be confident that the
specifications were of high quality. Only one author was
used for this study because we wanted to control for differ-
ences that might arise between authors. The specifications
took a total of about one week to complete.

In order to analyze the VCR specifications, we identified
the state variables and commands, hereafter referred to as
objects, which seemed to be shared across the appliances.
Some objects were identical, such as the counter and status
variables that tracked whether a tape was in the VCR. Many
objects were similar but not completely identical. For ex-
ample, the only differences between some objects were the
labels, such as for the “TV/VCR” or “VCR/TV” Boolean
states that are present on each VCR. Other objects con-
tained some of the same values, but also supported other
features that were not present across all of the VCRs. For
example, all of the VCRs have a state variable that specifies
whether the coax input is coming from the antenna or cable.
The Panasonic VCR supports only these two options, and
the Samsung adds an extra option called “Auto” in which it
will automatically select the appropriate value. The Mitsu-
bishi VCR does not have the auto value, but it supports two
additional input types not found on the other VCRs (“cable
box” and “digital cable”).

Other functions shared across all of the VCRs were speci-
fied quite differently. For example, each of our VCRs sup-
ports a timed recording feature to specify TV programs that
the user wishes to record in the future. The way to specify
the time that the program would be recorded differed across
devices. The Mitsubishi and Panasonic VCRs both have
variables for the start time and stop time of the recording,
while the Samsung has a matching variable for start time
but a different variable that specifies the duration of the
recording. In this case, the underlying data is quite different
even though the function is identical.

We also analyzed the organization of the VCR specifica-
tions and found a few differences. In general, it seems that
most of the same high-level groups were shared between
the specifications, though the exact placement of those
groups varied somewhat. For example, all of the VCRs
have the Power state at the top-level with groups for Status
and Setup. The Mitsubishi and Panasonic VCRs also have
groups for Controls and Timed Recordings at the top-level.
The Samsung DVD-VCR has these same groups, but they
are located in a top-level VCR group because this appliance
also must support its DVD and MP3 players.

Study 2: Differences Among Specification Authors
Our second study examined the variations in specifications
written for the same VCR by several different authors. For

this study, we were particularly interested in seeing how the
organization will vary between specifications. We used the
Panasonic VCR from the first study and recruited 3 students
in our university’s electrical and computer engineering de-
partment to be subjects. We chose these subjects because
we expect that specification authors in industry would have
this background.

Unlike in the first study, these subjects had no knowledge
of the PUC specification language when they started. Be-
fore writing the VCR specification, subjects were trained on
the language through a written document with several exer-
cises and examples from a to-do list application. We chose
to use written training so that we could ensure that the
learning experience was the same for each subject. The to-
do list application was used for examples because it incor-
porated every feature of the language, but was different
enough from the VCR that we did not believe it would af-
fect the subject’s specifications. Training and authoring
took a substantial amount of time, about 1.5 hours and 5
hours respectively, so we allowed subjects to take the mate-
rials and VCR home with them and complete the study over
the course of two weeks. Subjects were paid for their par-
ticipation: $15 for completing the training and $50 upon
returning the VCR and turning in a valid specification.

All three of the authors’ specifications contained two top-
level groups for setup functions and basic controls. All also
had a group for timed recordings, but not all placed the
group in the same location. Two of the three made timed
recordings a top-level group, while the other chose to place
it in the basic controls group. Two of the three had an ad-
vanced controls group, with one placing this group at the
top-level and the other putting it inside the basic controls
group. Within the common groups, the subjects used differ-
ent strategies to further organize the functions. For exam-
ple, one subject organized functions based on whether they
belonged to the TV and VCR, using this method to organize
within both the basic controls and setup groups.

The subjects also placed objects at different locations in
their hierarchy. For example, the repeat-play command was
put in the advanced playback controls group of one specifi-
cation and in the setup group in another one. The functions
were also defined differently in some cases, as one subject
used commands for the play, stop, and pause buttons while
the other two used state variables.

Discussion
In these studies we found that specifications will have dif-
ferences, even if written by the same author or for the same
appliance. These differences may be found in the specifica-
tion of similar functions and the organization of these func-
tions. The number and variety of differences was particu-
larly surprising and demonstrates the challenges that Uni-
form faces when creating consistent interfaces. In the next
section, we will combine these results with prior work on
interface consistency to synthesize a set of requirements for
the Uniform system.

REQUIREMENTS FOR CONSISTENCY
For Uniform, we define a consistent user interface as one
that is easier to learn because it incorporates elements and
organization that are familiar to the user from previous in-
terfaces. In the context of appliance interfaces, this might
mean that a new copier interface is easier to learn because it
uses the same labels as a previously learned copier interface
(see Figure 1) or that the clock is easier to set on a new
VCR interface because the clock controls are located at the
same place in the interface hierarchy (see Figure 2). In or-
der to facilitate this knowledge transfer between interfaces,
previous work suggests that tasks must have similar steps
and there must be sufficient external cues in both applica-
tions [11]. To facilitate this, Uniform has the following re-
quirements for its consistent user interfaces:

R.1 Interfaces should manipulate similar functions in
the same way

R.2 Interfaces should locate similar functions in the
same place

These two requirements help to ensure that user tasks will
have similar steps, which can facilitate knowledge transfer.
They also illustrate a fundamental separation in Uniform
between functional consistency and structural consistency.
Two interfaces are functionally consistent if the same set of
controls is used for similar functions. Two interfaces are
structurally consistent if similar functions can be found in
similar organizational groups. These two types of consis-
tency are independent and are addressed separately by Uni-
form.

In order for knowledge transfer to occur, we also need suf-
ficient external cues to indicate that the applications are the
same. In many cases, Uniform gets an important external
cue for free, because users are often aware of the type of
appliance they are using and will have some memory of
using similar appliances in the past. To reinforce that cue,
we have the following requirements to help increase users’
perceptions of consistency between user interfaces:

R.3 Interfaces should use familiar labels for similar
functions

R.4 Interfaces should maintain a similar visual ap-
pearance

We know from our studies that situations may arise where
these requirements cannot be followed. For example, simi-
lar functions may have different representations that cannot
use the same control. Unique functions may also affect the
order in which controls appear on the screen or affect the
layout if they require larger controls or have wider labels.
In these situations there is a fundamental trade-off between
maintaining consistency to a previous interface and appro-
priately rendering all of the new appliances’ functions. To
address this problem, we could favor consistency. In this
case, we could move the unique functions to a separate
panel so that they cannot affect the layout. This solution has
many negative consequences for usability however: impor-

tant functions could be moved to a non-intuitive location,
and the extra features of a similar function might appear to
not exist. It seems better to favor usability in these situa-
tions, and therefore we have the following requirement:

Figure 3. The user interface generation process of Uniform
integrated with the PUC’s existing generation process. Each
phase consists of a set of rules that use Uniform’s knowledge
base, which stores information about previous interfaces and
functional mappings between specifications.

R.5 Usability of unique functions is more important
than consistency for similar functions

We have found that a common result of this requirement is
that our consistent user interfaces do not always have a
similar visual appearance. However there may be some
benefit to having a different visual appearance: work by
Satzinger [15] found that users were able to learn the user
interface for a similar application more easily when the
interface used the same labels but had a different visual
appearance.

The first five requirements apply to the user interfaces that
Uniform generates, and illustrate the actions that Uniform
will take to ensure consistent interfaces. A pre-requisite for
all of these requirements however, is:

R.6 Interface generators must provide a method to find
similar functions across multiple appliances

Although this is a general requirement for any system that
wants to create consistent interfaces, the implementation of
this method is likely to be specific to the particular type of
input that the system receives. In the case of Uniform, the
input is written in the PUC specification language, which
provides a functional model of each appliance. Uniform’s
method for finding similarities may be applicable to other
systems that use functional models, but may not apply to
systems that use other types of input, such as task models.

The final requirement applies to Uniform’s design. Uniform
makes consistency decisions based on the previous inter-
faces that users have experienced, so it is possible for Uni-
form to generate consistently poor interfaces if users start
with poor interfaces. In order to address this, Uniform must
handle the following requirement:

R.7 Users must be able to choose to which appliance
consistency is ensured

This requirement affects Uniform at a fundamental level,
because its data structures must include information about
each of the possible consistency choices and it must have
some means to keep track of the current choice. To support
this, we developed a mapping graph structure, which is
used throughout Uniform and discussed in the next section.

ARCHITECTURE
Most interface generation systems, like the PUC, use a two-
step process to create user interfaces:

1. An interface specification is transformed into an ab-
stract user interface. The PUC’s abstract interface is a
platform-independent representation with a tree structure
that contains Abstract Interaction Objects (AIOs) [16]
for each function. The abstract user interface does not
contain any information about layout.

2. The abstract user interface is transformed into a plat-
form-specific concrete interface, which can be displayed
to the user.

Uniform attempts to separate itself from the interface gen-
erator by operating on the inputs, outputs, and intermediate
results of the generation process. Uniform necessarily must
know about the data structures the interface generator uses,
but it should be possible to translate its rules to use similar
structures from other interface generators. Consistent inter-
faces are ensured in four phases (see Figure 3):

1. Mapping Phase: the new specification is compared to
known specifications and the similarities between the
specifications are extracted and saved in a knowledge
base. Following this phase, the PUC transforms the
specification into an abstract user interface.

2. Functional Phase: each functional mapping is exam-
ined and the abstract user interface may be modified to
ensure functional consistency.

3. Abstract Structural Phase: the organization of the ab-
stract user interface is modified for consistency. This
phase helps to ensure structural consistency. Following
this phase, the PUC transforms the abstract interface into
a concrete user interface.

4. Concrete Phase: the concrete user interface is modified
to ensure a similar visual appearance.

Each of these phases consists of a set of rules. The rules of
the mapping phase are the only rules that add new informa-
tion to the knowledge base. The remaining rules, which we
call consistency rules, modify the abstract or concrete user
interface based on information from the knowledge base.
Most of the work to ensure consistency takes place in the
second and third phases, which operate on the abstract user
interface. The concrete phase is then used to clean up visual
consistency problems created by the interface generator’s
transformation process, such as changing the orientation of
panels or adding additional organization.

The knowledge base is an important piece of the Uniform
architecture. It stores previously generated specifications,
mappings between specifications, and information about the
interface designs built from those specifications. The most
important elements of the knowledge base are the mappings
between functions on different appliances. A mapping de-
fines a relationship between similar functions in two speci-
fications. These mappings may be automatically generated
by rules in mapping phase, manually specified by the user,
or downloaded from the Internet.

Uniform supports six different types of mappings, each of
which was identified from the specifications written for our
authoring studies. We believe that most of these types are
generally applicable for creating mappings with any type of
functional specification language, though one type is based
on a special feature of the PUC system called Smart Tem-
plates [9]. Each mapping type is described in Table 1.

Mappings between similar functions in multiple specifica-
tions are grouped together in a mapping graph. The central
purpose of a mapping graph is to help determine which

appliance should be used as the basis for consistency for a
function. Every mapping belongs to a mapping graph, and
there is a mapping graph for each set of similar functions in
the knowledge base. For example, the power, media con-
trols, and VCR/TV functions all have separate mapping
graphs containing mappings specific to those functions. An
example mapping graph for the media controls function is
shown in Figure 4.

Table 1. Mapping types in the Uniform system

Name Description
general Allows a series of operations on one appliance to be

matched with series of operations on another appli-
ance, with support for repetition. The possible opera-
tions are invoking a command or changing the value
of a state variable.

state Maps two state variables. Particular values of the
state may be mapped together, and a shortcut is
available to define that the two states have entirely
equivalent values.

node Specifies that a node in the group tree from one
specification is similar to a node in another specifi-
cation. A node could represent a group, command, or
state variable.

list Specifies that two lists contain the same data.
group Groups multiple mappings together. Groups cannot

be nested.
template Maps two Smart Templates [9], a special feature of

the PUC specification language. Smart Templates
allow the PUC to render domain-specific design
conventions, such as the standard number pad layout
on a telephone or the media control icons on a VCR.

Figure 4. An example mapping graph for the media control
functions, e.g. play, stop and pause, on four appliances. The
node counts indicate that the Panasonic VCR has been the
basis for consistency three times (for itself, the answering ma-
chine, and the DVD player) and the Cheap VCR has been the
basis for consistency once (just for itself). The answering ma-
chine and DVD player were generated to be consistent with the
Panasonic VCR, and thus both have counts of zero.

To find the specification to ensure consistency to, Uniform
starts at the node that represents the appliance being gener-
ated and traverses the mapping graph to find the node that
the user has seen most often. Each node maintains a count
of the times it has been used as the basis for consistency. As
discussed earlier, it may be impossible to ensure consis-
tency between similar functions if their specifications are
too different. To represent this case, the edges of a mapping
graph have cost values, currently limited to zero and infi-
nite. For example, in Figure 4 the Panasonic VCR repre-
sents play, stop and pause as a state variable while the
Cheap VCR uses only commands. It is not possible to con-
vert between these representations, so the mapping between
them will have infinite cost. Costs allow mapping graph
traversals to ensure that consistency can be maintained be-
tween the endpoints of the traversal result. You may won-
der why we bother to include infinite cost edges in the
mapping graph. When no zero cost edges are available,
infinite cost edges may be traversed to ensure consistency
by using the labels of a similar function.

MAPPING PHASE
The main function of the Mapping Phase is to automatically
extract mappings between the new specification and previ-
ous specifications that Uniform already knows about. The
challenge of automatic mapping generation is the lack of

substantial semantic information about each function within
the specifications.

We have built two separate matching systems. The first is
based on our intuition of the PUC data structures, and
makes use of names, label dictionaries, and variable types.
The second is based on the similarity flooding technique
[7], which also incorporates organization. The first system
performs the best, finding about 60% of the mappings in
our VCR test cases with about 20% of the total mappings
found being false positives. We are currently investigating
other means to improve our matching algorithms, such as
incorporating a thesaurus of appliance terminology. A
promising technique might leverage existing mappings
found among other specifications, but we have not yet ex-
plored this. Mappings not found by our current algorithms
must be specified by hand or downloaded from the Internet.

FUNCTIONAL PHASE
This phase ensures functional consistency by inspecting
each function in the new specification, determining whether
there is a previous function with which the new function
should be consistent, and then making changes to the ab-
stract interface to ensure consistency. Although this phase
precedes the abstract structural phase, these two phases
could be executed in the opposite order. We chose this or-
der for implementation reasons, because it is easier to find
functions in the abstract user interface before the structural
phase moves them around.

The previous function to be consistent with is found by
traversing the mapping graph. If a previous function is
found, Uniform uses functional consistency rules to trans-
form the new specification into a form that is consistent
with the previous specification. In order to determine the
particular rule to apply, Uniform iterates through the rules
until it finds a rule that matches the mapping. Uniform will
use the first rule that is found, so the rules must be carefully
ordered to ensure that those with more specific matching
conditions will be tested before those with more generic
matching conditions. Uniform currently implements eight
functional consistency rules, as shown in Table 2. Each rule
modifies a portion of the new specification to match the
previous specification. For example, the change-invoke-
to-change rule will convert between a state variable and a
state variable with a command that must be invoked before
a variable change will take effect. As part of this conver-
sion, a command in the new specification must be hidden or
a new command must be added. If the command is hidden,
the converted state variable will automatically invoke the
command when its value is set by the user. If a command is
added, then the appliance will not be informed of a variable
change until the user invokes the new command in the in-
terface.

Table 2. Uniform's functional consistency rules.

Name Description
state Ensures that similar variables use the same

label and, if possible, the same control
invoke-to-
invoke

Ensures that similar commands use the
same label

change-to-
repeated-invoke

Converts between the situation where
changing a variable on appliance is the
same as repeatedly invoking a command
on another

change-invoke-
to-change

Converts between the situation where one
appliance has a state variable and the other
has a state variable with a command that
must be invoked before a variable change
will take affect

time-end-to-
duration

Converts between the situations where one
appliance uses a start time and an end time
and another appliance uses a start time and
a duration

template Ensures that smart templates use the same
label and control style

node Ensures that nodes mapped with a node
mapping use the same label

generic-group Takes a group of mappings and processes
the other mapping rules on each of them.

ABSTRACT STRUCTURAL PHASE
The goal of the abstract structural phase is to ensure that
functions are located in the same place in new interfaces.
This phase is divided into two sub-phases: moving and then
re-ordering. Moving rules only need to ensure that func-
tions are placed in similar groups, and then the re-ordering
rules can ensure that the functions have a consistent order-
ing within their groups. Both of these sub-phases rely on
mappings, such as node, template, and list mappings, that
identify similar groups across specifications. Uniform uses
this information to rearrange groups so that they have the
same structure as a previous specification. Uniform does
not currently add new organization to specifications.

Moving
The moving sub-phase traverses the abstract user inter-
face’s group tree and searches for mappings.

An important feature of the moving sub-phase is its data
structure, called the “containment stack.” The purpose of
the containment stack is to keep track of similar parent
groups as the sub-phase traverses through the tree. Two
stacks are created, one for the new appliance and another
for the previous appliance. Only mappings between these
two specifications are included in the containment stack, so
any entry in the stack is known to refer to an existing loca-
tion in both specifications. For example, the containment
stack for the clock group in the Mitsubishi DVCR and Sam-
sung DVD-VCR is shown in Figure 5a. The clock is located
in a different group in these specifications, which is re-
flected in the containment stack.

Our current moving rule checks the containment stacks to
see if the top-most group mappings are different. If the
mappings are different, then the mapping’s objects are
moved to the group that corresponds to the previous speci-
fication’s top-most group mapping. For example, suppose
that we are generating the Samsung DVD-VCR interface to
be consistent with the Mitsubishi DVCR. The top-most
group mappings are Base.Setup for the DVD-VCR and
Base.Status for the DVCR, which are different. Because of
this, the moving rule will take the clock group and move it
to the DVD-VCR’s Base.Status group, which is similar to
the group with the same name on the DVCR (see Figure
5a). Note that this algorithm also chains appropriately. For
example, the clock group on the DVD-VCR contains a
variable that specifies the channel from which clock infor-
mation can be extracted. The DVCR has a similar state
variable, but is located in the setup group instead of the
clock group. Before Uniform moved the clock group, the
clock channel variable had the same containment in both
specifications, but afterward this is no longer true. When
the algorithm is applied to this channel variable, the differ-
ence in containment is found because the containment
stacks are calculated from the variable’s current location.
The algorithm will then move the channel variable back to
its consistent location in the setup group (see Figure 5b).
Note that this movement is visible in the generated inter-
faces: Figure 2b shows the clock group under the Setup tab
with the clock set variable, and Figure 2c shows the clock
group in the Status tab without the clock set variable.

Reordering

Figure 5. Containment stacks for the previous specification
(Mitsubishi DVCR), the new specification (Samsung DVD-
VCR), and the results of two consecutive movements. a) Shows
the movement of the clock group, and b) shows how the rule
chains with the movement of the clock channel state.

The reordering sub-phase moves functions within groups to
ensure a consistent ordering. For example, Figure 6 shows
that the parameters for a timed recording have a different
ordering between the Mitsubishi DVCR and the Samsung
DVD-VCR. This sub-phase, like the moving sub-phase,
traverses the abstract user interface until it encounters a
mapping. Unlike the moving sub-phase, reordering rules are
not applied to leaf nodes in the group tree.

Before the reordering rules are executed for a group, the
sub-phase determines the previous specification with which
the group will be made consistent. The sub-phase then cre-
ates a “block list” data structure for the group in the new
specification and its equivalent group in the previous speci-
fication. The block list is important because it allows rules
to analyze and manipulate functions as if the functions are
in a list, when the underlying representation of structure in
the abstract user interface is a tree. The tree structure can
become problematic when a function’s objects span multi-
ple levels of tree hierarchy, as in the case of the “When”
mapping on the Samsung DVD-VCR (shown in Figure 6).
Each set of adjacent objects with the same mapping be-
comes a block, which is stored in the list in the order they
would appear in a generated interface (see Figure 6). Con-
secutive unmapped objects are also stored as blocks in the
list. The block lists are processed by the reordering rules,
resulting in a new block list that specifies the final ordering
for the group.

Our current reordering rule starts by searching the block
lists from the new and previous specifications to find blocks
with the same mapping. These blocks are re-ordered to
match the previous specification. Unmapped blocks are
moved with the block that precedes them. For example,
notice in Figure 6 that the Type block followed the When
block to its new location. This heuristic seems to perform
reasonably for unmapped blocks, but we are also experi-
menting with additional rules that extract semantics from
the unmapped blocks and establish stronger links with
mapped blocks.

CONCRETE PHASE
The goal of the concrete phase is to ensure that the visual
appearance of the final interface is as similar as possible.
Following the advice of Satzinger [15], our concrete consis-
tency rules emphasize the placement of functions in similar
structure over recreating a previous layout. Our current
rules modify the concrete user interface to add organiza-
tional elements or modify the orientation and sizing of
some visual elements.

Figure 6. Block lists created for the timed recordings groups of
the Mitsubishi DVCR and Samsung DVD-VCR. “VCR+” and
“Type” are unmapped blocks in the block lists.

We have implemented two concrete consistency rules. The
first rule adds overlapping panel organization to a user in-
terface if it was used in the previous interface and more
than one control can be placed on each of the overlapping
panels. The exact type of overlapping panel widget is cho-
sen based on the previous interface. The second rule modi-
fies the side panels that the PUC interface generator some-

times creates around overlapping panels. This rule checks
the orientation of the side panel, which may be either hori-
zontal or vertical, and ensures that the orientation is the
same as in the previous interface. Both of these rules are
used to generate the consistent interfaces in Figure 1.

DISCUSSION AND FUTURE WORK
Uniform represents the first attempt to build a system that
automatically generates consistent interfaces from poten-
tially inconsistent interface specifications. Its strengths and
weaknesses suggest future areas of work for us and the CHI
community.

One of the biggest challenges throughout Uniform is appro-
priately dealing with the unique functions and organization
found in similar appliances. In this paper we have suggested
several heuristics to approach this problem, but our solu-
tions are often limited because of a lack of useful semantic
information about the unique functions. In part, this is due
to Uniform’s use of “relative semantics” to understand
similarity; Uniform only knows that two functions are simi-
lar, not why they are similar, what they do, or how they re-
late to other functions in the appliance. With better informa-
tion, Uniform could make more informed decisions about
where to place functions and when to create new organiza-
tion. Of course, better information would come at the cost
of additional modeling for each appliance because it seems
unlikely that detailed information could be automatically
extracted from available appliance information.

Uniform’s consistent interface designs are based on seven
basic requirements, as discussed earlier. These requirements
are based on current work in consistency, and would likely
benefit from some elaboration. More work to understand
how consistency can be best operationalized in an auto-
matic system would help greatly.

There are several directions to pursue with Uniform. Most
importantly, the system needs to be evaluated with users to
understand how much of an improvement it provides. We
would also like to replicate Satzinger’s study [15] to under-
stand the effect of visual appearance within our interfaces.
More specific studies of our rules would also be helpful to
determine which rules are contributing most to consistency
and whether any are detrimental. Uniform also needs to be
tested with many more appliances to validate its generality.

Another area of future work is to create additional rules
throughout all of Uniform’s phases. Rules are particularly
needed to in the structural consistency phase to deal better
with unmapped objects and in the mapping phase for auto-
matically inferring new mappings.

CONCLUSION
Uniform’s ability to generate consistent interfaces has im-
plications for the future of user interface research and de-
sign. For research, the absence of work on which to base
consistency rules suggests there is still research required in
the area of interface consistency, which has seen little activ-

ity in the past decade. For design, it demonstrates that auto-
matic interface generation systems can extend the capabili-
ties of human designers by adding features that would be
difficult or impossible to implement by hand.

ACKNOWLEDGMENTS
We would like to thank the reviewers and Andrew Ko for provid-
ing insightful feedback that helped us improve this paper substan-
tially, and Duen Horng Chau for assisting with the analysis of the
specification studies. This work was conducted as a part of the
Pebbles project, and was funded in part by grants from NSF, Mi-
crosoft, and General Motors, and equipment grants from Mitsubi-
shi Electric Research Laboratories. The National Science Founda-
tion funded this work under Grant No. IIS-0534349. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
those of the National Science Foundation.

REFERENCES
1. Gajos, K., Weld, D. SUPPLE: Automatically Generating User Inter-

faces, in Proc. of IUI. (2004) 93-100
2. Gajos, K., Wu, A., and Weld, D.S. Cross-Device Consistency in

Automatically Generated User Interfaces, in Proceedings of the 2nd
MU3I. (2005) 7-8

3. Gomes, L., Appliances Have Become Like PCs: Too Complex for
Their Own Good. The Wall Street Journal OnLine. (2003)

4. Grudin, J., The Case Against User Interface Consistency. CACM,
(1989) 32(10): 1164-1173

5. Kieras, D.E., Wood, S.D., Abotel, K., and Hornof, A. GLEAN: A
Computer-Based Tool for Rapid GOMS Model Usability Evaluation
of User Interface Designs, in Proc. of UIST. (1995) 91-100

6. Mahajan, R. and Shneiderman, B., Visual and Textual Consistency
Checking Tools for Graphical User Interfaces. IEEE Transactions on
Software Engineering, (1997) 23(11): 722-735

7. Melnik, S., Garcia-Molina, H., and Rahm, E. Similarity Flooding: A
Versatile Graph Matching Algorithm and its Application to Schema
Matching, in Proc. of 18th ICDE. (2002) 117-128

8. Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris, T.K.,
Rosenfeld, R., and Pignol, M. Generating Remote Control Interfaces
for Complex Appliances, in Proc. of UIST (2002) 161-170

9. Nichols, J., Myers, B.A., and Litwack, K. Improving Automatic Inter-
face Generation with Smart Templates, in Proc. of IUI (2004) 286-288

10. Nielsen, J., Usability Engineering. 1993, Boston: Academic Press.
11. Polson, P.G., The consequences of consistent and inconsistent user

interfaces, in Cognitive science and its applications for human-
computer interaction (1988) Lawrence-Erlbaum. Hillsdale, NJ

12. Reisner, P. What is inconsistency? in INTERACT. 1990. 175-181.
13. Rheinfrank, J. and Evenson, S., Design Languages, in Bringing Design

to Software, T. Winograd, Editor (1996) Addison-Wesley 63-80
14. Rich, C., Sidner, C., Lesh, N., Garland, A., Booth, S., and Chimani, M.

DiamondHelp: A Graphical User Interface Framework for Human-
Computer Collaboration, in Proc. of IEEE International Conference
on Distributed Computing Systems Workshops. (2005) 514-519

15. Satzinger, J.W. and Olfman, L., User Interface Consistency Across
End-User Applications: The Effects on Mental Models. Journal of In-
formation Management Systems (1998) 14(4): 167-193

16. Vanderdonckt, J., Advice-Giving Systems for Selecting Interaction
Objects. User Interfaces to Data Intensive Systems (1999) 152-157

17. Wiecha, C., Bennett, W., Boies, S., Gould, J., and Greene, S., ITS: A
Tool for Rapidly Developing Interactive Applications. ACM Transac-
tions on Information Systems (1990) 8(3): 204-236

18. Yucesan, E. and Schruben, L., Structural and Behavioral Equivalence
of Simulation Models. ACM Transactions on Modeling and Computer
Simulation (1992) 2(1): 82-103

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	SPECIFICATION STUDIES
	Background: PUC Specification Language
	Study 1: Differences Among Appliances
	Study 2: Differences Among Specification Authors
	Discussion

	REQUIREMENTS FOR CONSISTENCY
	ARCHITECTURE
	MAPPING PHASE
	FUNCTIONAL PHASE
	ABSTRACT STRUCTURAL PHASE
	Moving
	Reordering

	CONCRETE PHASE
	DISCUSSION AND FUTURE WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

