

Highlight: A System for Creating and Deploying
Mobile Web Applications
Jeffrey Nichols*, Zhigang Hua†, John Barton*

*IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120
{jwnichols, bartonjj}@us.ibm.com

†GVU Center & College of Computing
Georgia Institute of Technology

Atlanta, GA 30332
hua@cc.gatech.edu

ABSTRACT
We present a new server-side architecture that enables rap-
id prototyping and deployment of mobile web applications
created from existing web sites. Key to this architecture is a
remote control metaphor in which the mobile device con-
trols a fully functional browser that is embedded within a
proxy server. Content is clipped from the proxy browser,
transformed if necessary, and then sent to the mobile de-
vice as a typical web page. Users’ interactions with that
content on the mobile device control the next steps of the
proxy browser. We have found this approach to work well
for creating mobile sites from a variety of existing sites,
including those that use dynamic HTML and AJAX tech-
nologies. We have conducted a small user study to evaluate
our model and API with experienced web programmers.
ACM Classification: H.5.4 [Hypertext/Hypermedia]:
Architectures – Dynamic HTML, AJAX, proxy servers,
mobile clients.
General terms: Algorithms, Design, Human Factors
Keywords: Highlight, mobile web, dynamic HTML, Java-
Script, proxy browser, proxy server

INTRODUCTION
Use of the web from mobile devices is becoming increas-
ingly popular [15]. Many popular web sites offer mobile
versions, and new devices, such as the iPhone, offer easy
browsing of desktop-sized web pages on a small device.
Unfortunately, recent survey results suggest that only about
one-third of all mobile web users are satisfied with their
experience [19]. We believe that two reasons for this low
satisfaction are:
• existing mobile sites do not always offer streamlined

access to the functionality each user wants;
• web site designs for desktop browsing are not always

appropriate for scenarios when the user is on-the-go.

A possible solution to both of these problems is to create
technologies that allow users to create their own mobile
web sites by re-authoring existing web sites. Using this
approach, users choose the features that they want included
in their mobile sites, avoiding the problem of missing func-
tionality that exists in many of today’s mobile sites. Re-
authoring can also allow users to remove irrelevant content,
skip over pages that are not needed, and break up complex
pages into multiple simpler pages. These types of changes
allow users to streamline the desktop browsing experience
into something more appropriate for mobile situations.
Figure 1 and Figure 3 show some examples of mobile ap-
plications that might be re-authored from existing sites.
As part of the Highlight project, we are building re-
authoring tools and a deployment system to investigate the
feasibility of re-authoring a wide variety of existing web
sites. In previous work [17], we have explored how pro-
gramming-by-demonstration techniques can be used by end
users to re-author web pages with little or no embedded
JavaScript. In this paper, we describe our server-side sys-
tem that allows programmers to re-author existing pages
that include dynamic JavaScript and AJAX (not possible
with our PBD tool) and to deploy the re-authored applica-
tions to mobile devices.
This paper makes the following contributions:
• The use of a remote control metaphor and persistent

state for easing the creation of mobile sites and making
the re-authoring of sites with dynamic JavaScript and
AJAX possible;

• The architectural design of placing a fully functional
web browser in a proxy server to enable use of the re-
mote control metaphor, and an implementation of this
design.

Unlike previous systems that have used proxy servers that
act as a pass-through filter for the HTML stream (e.g. [10,
11]), in Highlight’s design the mobile device remotely con-
trols the web browser embedded in the proxy server. Re-
quests from the mobile device are translated into interactive
operations on the current page in the proxy browser, such
as filling in form fields and clicking links. Once the result
of those interactive operations is available, relevant content
from the new page is clipped from the proxy browser and
returned to the mobile device. A mobile application de-
scription, which is uploaded to the server in advance and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST’08, October 19–22, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-975-3/08/10...$5.00.

chosen by the mobile user at the beginning of their session,
guides the interaction between the mobile device and the
proxy browser.
The remote control metaphor requires the proxy browser to
maintain its state across each of the mobile device’s re-
quests. We have found the persistent state, along with the
remote control metaphor, to be very useful in re-authoring
existing sites for mobile devices. For example, a long form
on an existing site can be broken up into multiple mobile
pages. When the mobile returns the first part of the form,
those fields can be filled in on the proxy browser and the
next part of the form returned to the mobile device. When
all of the fields have been filled in, the proxy browser can
be instructed to submit the form.
The persistent state also enables the Highlight infrastruc-
ture to re-author pages with substantial amounts of dy-
namic JavaScript and AJAX features. These pages can alter
their content without making new requests to their server or
may make requests to the server through XmlHttpRequests
that return data that cannot (or should not) be modified.
These qualities make these pages impossible for previous
proxy server-based systems to handle. Highlight is able to
handle such features because it works at the interactive

level. An interaction from the mobile device may trigger
JavaScript to execute in the proxy browser. Once that code
has completed and the current page has been updated, the
result can be clipped and sent back to the mobile device.
We have evaluated our system from two different angles.
First, we have used our system to implement and deploy
mobile applications for a wide variety of existing web sites,
including sites using modern AJAX toolkits such as Dojo
[2]. This includes mobile applications programmed by hand
and built with our end user tool. Second, we conducted a
small user study with experienced web programmers to test
the usability of creating new applications by hand.

RELATED WORK
The Highlight proxy server uses a remote control architec-
ture in which the mobile device controls the proxy server’s
web browser through its requests. There has, of course,
been other work in remote controlling one computer from
another, such as VNC [20]. WinCuts [23] and Façades [22]
are related systems that allow portions of an application to
be remotely controlled, enabling users to re-author an exist-
ing application by choosing and re-arranging its on-screen
rendering. These systems both use bitmaps to show the
state of the remote system and replicate the exact mouse

a. b.

c. d.

Figure 1. A variety of mobile applications created using Highlight. a) The existing interface for BlueMail, showing two different views
served via the same web page. b) Our proof-of-concept mobile application for BlueMail. c) A mobile application for the IBM corporate di-
rectory (BluePages). d) A mobile application for changing your facebook status, built by one of our user study subjects.

and keyboard events from the controlling system on the
controlled system. The Highlight proxy uses a more ab-
stract approach, where the page seen by the proxy server is
modified for mobile viewing and events from the mobile
device must be translated into interactions with the proxy
browser.
Another relevant system is Adeo [9], which allows mobile
phone users to run previously recorded macros in a web
browser on a remote machine and receive back the results
on their phone. Inputs can be provided to the macros at the
start, but otherwise macros run completely independent of
the phone and only return when they have completed.
Adeo’s architecture has an element of the remote control
metaphor used by Highlight, although in Adeo the browser
is treated more like a function that returns a result instead
of as an interactive entity. We believe that Adeo could be
built using Highlight, however the reverse would not be
possible.
A recent focus of mobile web work has been creating new
browser interaction techniques that attempt to improve the
mobile browsing experience. The iPhone’s multi-touch
interface is the best example of such a technique that is also
having success in the marketplace. However, we believe
there is still a place for content modification approaches
such as that of Highlight. Modified interfaces will almost
always be smaller and easier to navigate as compared to
regular web pages. As long as the modified interface meets
the needs of the user, then the modified pages should be
faster and easier to use.
Substantial research has been conducted in the area of
adapting web content [24] for mobile devices, and particu-
larly in the area of using proxy servers to perform the adap-
tation. Much of this work has developed heuristics for au-
tomatically modifying HTML, CSS, and embedded images
to suit the properties of the viewing device. For example,
Digestor [5] modified web pages for mobile viewing with a
set of heuristics that included splitting a single page into
multiple pages corresponding to the outline structure of the
original page. More recently, heuristics have been explored
for modifying pages based on repeating structures [13].
This work has culminated in a variety of commercial ser-
vices, such as Google Mobile Search [10] and Skweezer
[11], which allow users to search the web and view result
pages that are transformed for viewing on a mobile device.
A major difference between our work and the previous
work is that most of these proxy server-based content adap-
tation systems seem to ignore Javascript. After adaptation,
code on the pages may still function if its targets still exist
and the code can still find the targets that have moved. A
US patent [21] describes a possible method for partially
addressing this problem, by automatically searching the
JavaScript code in a page and changing any references to
page elements that have moved. It is unclear how well this
method would work in practice however. Furthermore, if
JavaScript is used to generate new HTML content within
the page, then these systems will be unable to alter the new

content because this code is executed on the client after the
proxy server’s processing is complete. The Highlight proxy
server is explicitly designed to address both of these issues.
d.mix [12] is a novel system that allows users to modify
content from sites by selecting and combining page ele-
ments that are generated by calls to web services, poten-
tially from different pages on multiple sites. A proxy server
is used to store and serve applications created with d.mix
and the creation of mobile interfaces is supported. d.mix
seems to be limited to using content that can be extracted
by a web service function call however, so it is not able to
create mobile versions of pages that do not have a corre-
sponding service.
A popular method of modifying existing web pages is to
inject custom JavaScript code directly into the page. The
custom code then modifies the page by hiding or removing
existing elements, adding its own new elements, and
changing the event handlers that process user interactions.
This approach was pioneered by Greasemonkey [3], an
extension to the Firefox web browser, which is a client-side
implementation that injects code into the browser once a
page has been loaded. Monkeygrease [16] and Accessmon-
key [6] perform code injection through a proxy server,
which allows Greasemonkey-like functionality for brows-
ers that do not support the Greasemonkey extension, such
as most mobile browsers and Internet Explorer.
Like the Highlight proxy browser approach, code injection
allows for modification of pages that include dynamic
JavaScript and AJAX. There are some trade-offs between
the two approaches however, and we will discuss these
later after describing Highlight in more detail.

ARCHITECTURE
The architecture of the Highlight system uses a proxy
server, which connects existing web servers and mobile
devices. In our system, the web server believes that it is
connecting to a normal desktop browser and is not aware
that its content is being forwarded to a mobile device.
Similarly, the mobile device is also not aware that it is con-
necting through a proxy. We chose this approach so that
the connection could be seamless without requiring any
configuration of proxy settings on the mobile device,
which can sometimes be difficult and may only be desired
for a few of the sites that the user visits. The only require-
ment Highlight places on the mobile device is that it has a
web browser that can speak standard HTTP protocols and
render at least simple HTML content. The Highlight sys-
tem does not support converting HTTP/HTML to
WAP/WML, though this could be added in the future. As-
suming the mobile device has a compatible web browser, it
is not necessary to modify or install any software.
The proxy server contains an HTTP server, a database of
mobile application descriptions, and a proxy browser.
When the user of a mobile device wishes to access an ap-
plication, they point their mobile browser at the proxy
server’s main page where they will see a list of all the ap-
plications available in the proxy server’s database (see the

first page in Figure 3). Choosing one of these applications
causes the proxy browser to be opened, and the corre-
sponding mobile application description specifies the steps
that the proxy browser will follow to reach the page corre-
sponding to the first page of mobile content. The applica-
tion description also describes the content that should be
clipped from that page and sent to the mobile client.
It is important to emphasize that the proxy browser is auto-
mated at the interactive level. Form fields are filled in and
appropriate change events are generated, and links and
buttons are “clicked” by generating click events with the
appropriate targets. The advantage of this approach is that
Highlight does not need to do anything special to invoke
any client-side JavaScript code that may be included in the
existing web page. For example, many web pages have
links that reference a JavaScript method within the page
rather than a URL on a web server. In other cases, event
handlers for a link may be added dynamically by other Ja-
vaScript code on the page. By artificially clicking the link
in the proxy browser, Highlight ensures that the original
web page designer’s assumptions about page operation will
be maintained without needing to analyze JavaScript code
or track the current state of the page. Moreover, this ap-
proach requires no knowledge of the server-side implemen-
tation of the web application beyond what can be inferred
from its user interface. No knowledge of the application’s
client-side JavaScript implementation is needed either,
unless the programmer wishes to use some portion of the
existing JavaScript code in their mobile application.
Highlight’s process of clipping content from a page is also
performed without modifying the structure of the existing
page. To accomplish this, nodes of the existing document
are cloned into a new document and any modifications,
such as removing unneeded elements, are performed in the
new document. This approach is in contrast to code injec-
tion approaches, such as Greasemonkey, which modify the
content of the page directly. Modifying the existing page
may invalidate the assumptions of any JavaScript contained
in that page, causing the page to no longer function.
Content clipped from the existing page will likely contain
interactive elements, such as links and form fields. By de-
fault, Highlight rewrites links and forms to direct back to
the proxy server and also provides the application descrip-
tion with a mapping between the elements on the mobile
page and those in the proxy browser. Interacting with the
mobile page will cause a new request to be sent back to the
proxy server, where the request is interpreted by the mobile
application description. In most cases, the mapping pro-
vided by the Highlight infrastructure is used to replicate a
user’s interactions on the mobile device within the proxy
browser. For example, if the user clicked on a link in the
mobile page, the corresponding link will be clicked on the
proxy browser page. More advanced programmers can also
create application descriptions that add extra behavior,
such as setting values for form fields that exist in the origi-
nal page on the proxy browser but were not included in the
mobile page. In all cases, the application description auto-

mates navigating the proxy server to the next page that
contains content for the next mobile page. This content will
be clipped and modified according to the application de-
scription, and then sent to the mobile device. Thus, the
nature of the interaction between the proxy browser and the
mobile device is similar to that of a remote control. Interac-
tions with the mobile device cause similar, though not nec-
essarily identical, interactions with the proxy browser to
retrieve the next set of content.
To make the creation of mobile application descriptions
easier, Highlight provides a programming interface (API)
that makes automating the proxy browser and clipping con-
tent much easier. This API is built on top of the standard
DOM APIs already available in browsers, and augmented
by a set of methods for automating interactive operations
based on those used in the CoScripter system [14]. In our
current prototype implementation, the API can also be ex-
tended by installing Firefox extensions, such as Chicken-
foot [7], into the proxy browser.
The mobile application description provides one possible
mapping between an existing web site and a mobile ver-
sion, and multiple mobile application descriptions may be
specified for a single web site. Users choose the application
they wish to use when they begin using the proxy server.
The advantage of this approach is that different users may
specify different mobile versions of a single site and a sin-
gle user may create multiple mobile versions of a single
site that reflect different tasks that are performed using the
site. For example, the same user might specify different
applications for accessing the current weather and the 10-
day forecast on weather.com. Another user might create a
more complicated application that combines these two fea-
tures.
Our current implementation of the Highlight architecture
contains multiple proxy browser instances; one proxy
browser instance for each mobile application that is being
used on the proxy server. This design trades off scalability
for improved security and privacy, and also allows for eas-
ier detection of side-effects. For example, if a page opens
in a separate window we can assume that it is linked with
interactions going on within its browser’s session because
the only inputs to a proxy browser instance are a single
mobile client and the existing web site used by the mobile
application.
Scalability is an important concern however, and a separate
proxy browser instance is a significant resource to allocate
for each session. We believe that to make this system work
at a significant scale, a headless browser will be needed
that is designed explicitly to work in an unattended envi-
ronment. Given that there are several full featured browsers
that can run on mobile devices, such as Opera and Safari
Mobile, it seems likely that a headless browser could be
created with a small enough footprint that many instances
could run on a single machine. Aptana’s Jaxer product [4],
which embeds a Mozilla browser on the server-side for
DOM parsing but not remote control, suggests that such a

solution may become available. An alternate approach may
be to use a distribution model more akin to that of the
Slingbox, where users host their own Highlight servers at
home for use by their own mobile devices.

Prototype Implementation
We have implemented a prototype version of our system
using the Apache Tomcat server and a custom Java servlet
as the HTTP server component and the Mozilla Firefox
web browser as a proxy browser instance. A difficulty with
the current prototype is that the Firefox browser is not de-
signed to be used in an entirely automated environment.
The browser will often display user interface elements out-
side of a web page, such as modal dialog boxes, that must
be dealt with appropriately by the automation system and,
in some cases, communicated to the end user. An important
example of this situation occurs when the browser visits a
page that uses HTTP authentication. In this case, the
browser will display an authentication dialog box that must
be filled in. Our prototype proxy server will automatically
identify this situation and send an authentication web page
to the mobile user. When the results of this page are sub-
mitted, they are filled into the dialog box and execution of
the application continues. Similar strategies are used to
deal with other dialog boxes. This example introduces is-
sues of security, which will be discussed later.

DESCRIBING AN APPLICATION
Conceptually, Highlight mobile application descriptions
can be thought of as a storyboard of multiple mobile pages,
or pagelets, that are connected by links and forms. Some
example mobile application storyboards can be seen in
Figure 1 and Figure 3. The structure of a mobile applica-
tion storyboard overlays the structure of the existing web
site, but does not need to match it. For example, the mobile
application may skip pages in the existing site or divide a
single existing page into multiple pagelets. When a mobile
application is running, its current location within the story-
board is tracked in order to determine the possible next
pages for the application.

Highlight mobile application descriptions are contained in
a single JavaScript file that defines an object for each page-
let, each of which contains two specific methods:

• The clip method generates the content for the current
pagelet from the content of a page from the existing
site. This method identifies content from within the
current page, extracts the appropriate pieces, and trans-
forms them into the HTML content that will be sent to
the mobile device. This method may also add new con-
tent, including JavaScript, to give mobile pages extra
functionality or support improved interactivity.

• The event method for a pagelet is called when the
mobile client is viewing that pagelet and then initiates
a connection to the server, typically by clicking a link
or submitting form data. The event method examines
the web request, determines the interaction taken by
the user, and performs interactions within the proxy

browser to reach the next page of content. This may
involve stepping through multiple pages on the way to
the page that contains the content for the next pagelet.
The event method also determines which pagelet is
next and when the proxy browser is ready for the next
clip method to be executed.

Figure 2 shows a graphical depiction of the interactions
between the mobile device, the pagelet methods, and the
proxy browser.

A key decision in the design of Highlight was choosing a
level of abstraction for the mobile application description
language; we considered using either a relatively abstract
declarative language of our own design or an existing pro-
gramming language. In making our decision we considered
a few criteria:
• ease of creating applications for humans;
• ease of creating applications for computers;
• complexity of applications that could be created.

The advantage of using a declarative language would have
been increased ease of creating applications for humans
and computers, and a reduced need for debugging. The
disadvantage, however, was that applications would be
limited to the complexity that our language allowed. Ex-
ploring a new idea would have required extending the de-
clarative language and then implementing code to handle
the language changes within the proxy server system. In-
stead, we chose to use an existing programming language
to describe our applications. This decreased the ease of
creating applications by humans, did not affect the ease of
creating applications by computers, and greatly increased
the complexity of applications that could be created. This

Figure 2. A timeline view of a mobile application being exe-
cuted on the proxy server showing the order in which the
methods from the mobile application description are called.

design also gave us increased ability to explore the design
space for applications by first writing the entirety of our
applications within the mobile application description, and
then over time moving the commonly used pieces of code
into the proxy server’s API (an ongoing process).
To offset the increased difficulty of creating applications
for humans, we have been investigating authoring envi-
ronments that use programming-by-demonstration tech-
niques to allow users to create mobile application descrip-
tions without writing any code [17]. Once an application is
specified within the authoring environment, the corre-
sponding JavaScript code can be generated and uploaded to
the proxy server. Note that this end-user environment is
restricted in the types of pages that it can re-author, such as
those that use lots of dynamic JavaScript or AJAX. Pro-
gramming an application by hand also gives the author
substantial extra power, including the ability to add new
features that were not part of the existing page, to re-author
sites that use AJAX, and to include JavaScript and AJAX
in the pages sent to the mobile device.

BUILDING A MOBILE APPLICATION
To demonstrate more concretely how a Highlight applica-
tion is built, we will describe how a simple mobile to-do
list application can be constructed from the Backpack web
site [1]. This site uses an AJAX design to provide users
with a flexible interface for creating and aggregating lists
of content. The Highlight mobile to-do list application uses
a small subset of Backpack’s features, and converts the
original AJAX interface into a simple HTML form-based
interface for access on a wide-variety of mobile devices.
The full version of this application description can be
viewed at:
http://www.jeffreynichols.com/highlight/BackPackTodo.js

This example illustrates the two biggest challenges for con-
structing a mobile application from web, and particularly
AJAX, applications:
• Identifying the content to clip/manipulate on the exist-

ing page;
• Determining when content is ready to clip.

Note that both of these issues are shared by any tool that
re-authors existing web content, including code injection
approaches like Greasemonkey.
For clipping content we support several different methods:
traversing the pages’ DOM structure with the standard
JavaScript API, an XPath expression [8], a heuristic repre-
sentation known as “slop” that was pioneered by Chicken-
foot [7] and CoScripter [14], and a Dojo toolkit-specific [2]
method that traverses the toolkit hierarchy to find the “wid-
gets” included in the page. The particular method used de-
pends on the web site being mobilized and the author of the
mobile application description. For AJAX applications that
are based on a publicly available toolkit, the best approach
may be to make use of the toolkit’s methods for traversing
its widget-level description of the page. In this example, we

choose to use a combination of DOM API methods and
XPath expressions for clarity and brevity.
Determining when content is ready to clip is most difficult
for web sites that use client-side JavaScript and AJAX. In
these cases, interacting with the page may invoke code that
modifies the DOM in some way. The delay between inter-
acting and the DOM change will take an arbitrary amount
of time, as AJAX applications may request data from the
server before performing the modification. DOM level 2
events standardize support for eventing based on structural
changes within the DOM, however most current web
browsers provide inadequate support for these features. As
a result, Highlight provides two API methods to help appli-
cation authors determine when content is available. The
first, used in our example here, is the ability to delay for a
specific period of time before continuing. Authors can use
this feature to manually poll for the existence of an ele-
ment. Highlight also has a pollForItemExist method that
polls internally and calls a callback when an element with a
particular XPath expression exists and is visible.

BackPack Example Walkthrough
The first step in building a Highlight application is to de-
cide on the structure of the mobile application. This in-
cludes determining what pagelets the mobile application
will have and how they will be connected. A storyboard of
our to-do list application is shown in Figure 3. We chose to
have three pagelets in our application: a login pagelet, a
confirmation pagelet for when the user clicks the “forgot
password” link, and the main “todolist” pagelet.
The next step is to implement the special start event me-
thod. This method is not associated with any pagelet and is
intended to take the proxy browser from its initial blank
state to the point at which the first page of content can be
generated. In this case, our event method opens a URL
within the proxy browser using a standard JavaScript API
call, specifies that the “login” pagelet is next and that the

Figure 3. A storyboard diagram of the Backpack To-Do List
application, showing screenshots of the actual application
being used through Mobile Internet Explorer on a Windows
Mobile device. Also shown is the application list view from the
Highlight proxy server.

clip method for that pagelet should be called from the
browser’s onload event using the Highlight API. The spe-
cial clipCallback method is provided to every event method
to give it control over when the clip method should be
called. Note that the event method does not need to check
for easily identifiable failures, such as the web site being
unavailable or returning a standard HTTP error code.
These errors are checked for by the Highlight API’s cal-
lOnceOnLoad method. A more robust version of this event
method might have checked for a web-site-specific “server
down” message by including additional code to be called
during the onload event before calling the clipCallback.
We chose not to do so here for brevity.
Start event method:
doEvent:function(clipCallback,browser,document,
 evt,formData)
{
 browser.loadURI(‘http://jwnichls.backpackit.com/’);
 HighlightProxy.setNextPagelet(‘login’);
 HighlightProxy.callOnceOnLoad(browser, clipCallback);
}
The next step is to implement the pagelet methods. To
show how pagelet content is generated, we will first exam-
ine the clip method for the login pagelet. This method as-
sumes that the proxy browser is now viewing Backpack’s
login page, and uses XPath expressions to find the appro-
priate content within the existing page and replicate it for
the mobile page. This method also modifies the content
slightly by removing a “Remember me” checkbox, which
is a web site feature that the Highlight proxy server cannot
support (cookies are removed at the end of every session).
Login clip method:
doClip:function(document, proxyhost)
{
 // Clip content into a document
 var clipDoc = HighlightProxy.createClipDocument();
 var bodyElem = clipDoc.getElementsByTagName('body')[0];
 var loginPanel =
 HighlightProxy.clipAsDOM(document,'/HTML[1]…');
 bodyElem.appendChild(loginPanel);

 // Remove the “Remember me” checkbox
 HighlightProxy.remove(clipDoc,'/HTML[1]…');

 // Give the forgot password link a custom targetName
 var link = clipDoc.getElementsByTagName('a')[0];
 HighlightProxy.setTargetName(link, 'forgotPassword');

 return loginPanel;
}

At the end of the method, you will note that a targetName
is assigned to the “forgot password” link. The target name
property is a mechanism that Highlight provides to authors
to help them determine what interaction the mobile user
just performed with the mobile page. The target name can
be used to influence the subsequent logic of the application
and also to identify the corresponding element in the exist-
ing web page on the proxy browser. Highlight automati-
cally assigns target names to all interactive elements in the
mobile page, but the author can provide custom names to
identify particular elements and make their code more
readable.
The login pagelet event method is shown below. This me-
thod identifies the action the user performed on the mobile
device: in this case, either clicking the “forgot password”

link or the submit button. Because we assigned a custom
target name to this link in the clip script, we can use the
target name to determine the action. Afterward, the method
mimics interactions within the proxy browser to advance
the browser to the next page. For the “forgot password”
link, this involves simulating a click on the link and speci-
fying that the next clip method should be called from the
onload event of the next page.
Login event method:
if (evt.targetName == "forgotPassword") {
 var link = HighlightProxy
 .getLinkNodeForTarget(evt.targetName);
 HighlightProxy.clickElement(link);
 HighlightProxy.setNextPagelet(‘emailedPassword’);
 HighlightProxy.callOnceOnLoad(browser, clipCallback);

} else { // the login form was submitted
 HighlightProxy.autoFillInFormFields(
 browser.contentDocument, formData);
 var submitButton = browser.contentDocument
 .getElementsByTagName('input')[4];
 HighlightProxy.clickElement(submitButton);

 HighlightProxy.callOnceOnLoad(browser, function() {

 if (browser.contentDocument.location.toString() ==
 “http://jwnichls.backpackit.com/login”) {
 // login failed
 HighlightProxy.setNextPagelet(‘login’);
 clipCallback();
 } else {
 // login succeeded
 var addItemLink = browser.contentDocument
 .getElementById('link_to_add_child_list_1327418')
 .getElementsByTagName('a')[0];
 HighlightProxy.clickElement(addItemLink);
 HighlightProxy.setNextPagelet(‘todolist’);
 HighlightProxy.callAfterDelay(1000,
 clipCallback);
 }
 });
}

The most interesting aspect of the method occurs when the
form is submitted. To advance to the next page, we fill in
the form fields based on the submitted information and
simulate a click on the submit button. After loading the
next page, the event method must check to see if login was
successful. In this case, a simple method is checking the
URL of the current page. If we are still on the login page,
then we stay on the login pagelet and re-clip. Otherwise,
we assume that we are on the application’s main page. The
initial version of the main page does not have a text box for
adding a new item to our list. To ensure that this text box
will appear in the clipped version of our page, the event
method simulates a click on the “Add an item” link for our
to-do list. Note that the number in the id of the click ele-
ment does not change across multiple sessions. After a
short delay that allows the text box to appear, we proceed
with clipping the “todolist” pagelet.
The “todolist” clip method is shown below. The list, its
“add item” text box, and the “add item” submit button are
conveniently located within a element that has a constant id
across all sessions, so this element can be clipped and sent
to the mobile device as content. Two modifications must be
made however. Most importantly, clicking checkboxes in
Backpack is handled by JavaScript code, so there is no
submit button for these checkboxes. This approach will not
work for our simple mobile application, so we must add a

submit button to update the checkbox values with the
proxy server. To differentiate from the “add item” button,
we give each a different target name through the Highlight
API. The final call to cleanUpForms ensures that Highlight
has a mapping between all of the input fields in the pagelet
and the page in the proxy browser, so that the appropriate
information can be updated when the mobile form is sub-
mitted.

Application Name # Ps Lines

Ave.
Lines/

Pagelet

Todolist clip method:
var clipNode = HighlightProxy.clipAsDOMByID(document,
 'list_1327418');

// update the targetName on the add button
var addItemButton = HighlightProxy
 .findSubmitButtonWithLabel(clipNode,
 "Add this item");
HighlightProxy.setTargetName(addItemButton, "addItem");

// add a submit button to update the items
var updateButton = HighlightProxy.createSubmitButton(
 document,"Update To Do Items", "updateItems");
clipNode.appendChild(updateButton);

// clean up any form mess
clipNode = HighlightProxy.cleanUpForms(document,
 clipNode);
return clipNode;

The event method for the to-do list pagelet checks the tar-
get name parameter to determine which button was
pressed, and then takes the appropriate actions within the
browser. Note that the autoFillInFormFields method
dispatches the appropriate events when form fields are en-
tered, which ensures that the appropriate AJAX calls are
made when the checkbox values are changed in the proxy
browser. We allow a certain amount of time to elapse be-
fore clipping so that the AJAX methods can be processed.
Todolist event method:
HighlightProxy.autoFillInFormFields(
 browser.contentDocument, formData);
if (evt.targetName == "addItem") {
 var addButton = HighlightProxy
 .findSubmitButtonWithLabel(browser.contentDocument,

One of the most interesting applications that we have cre-
ated so far is for BlueMail [18], an AJAX web mail client
implemented by a team at our research lab. This web site is
implemented using the Dojo toolkit [2], comprising at least
198 Dojo widgets. All interaction with the BlueMail client
takes place inside of a single web page at one URL, even
though some views of the application look substantially
different (see

 "Add this item");
 HighlightProxy.clickElement(addButton);
}
HighlightProxy.setNextPagelet(‘todolist’);
HighlightProxy.callAfterDelay(1000, clipCallback);

EVALUATION
We have evaluated the Highlight system in two ways: 1) to
show breadth we created a number of mobile applications
for a variety of different existing web sites, and 2) to show
usability we conducted a small user study with web pro-
grammers.

Breadth
To date, we have created more than 20 mobile applications
from existing sites such as aa.com, amazon.com, ebay.com,
fitday.com, google.com, homedepot.com, mapquest.com,
sfgate.com, weather.com, several internal IBM intranet
sites, and many others. A large portion of these applica-
tions were built with the Highlight Designer [17], our end-
user authoring environment. A few applications, such as
one for the internal IBM corporate directory (called Blu-
ePages, see Figure 1c), were created initially in the author-
ing environment and then modified by hand to support ad-
ditional features.

Table 1 shows the lines of code needed to build a selection
of these mobile applications and a breakdown of the aver-
age number of lines to define each pagelet and the number
of lines used in just the clip method of each pagelet. An
important thing to note from this table is that for most ap-
plications clipping requires the most code, and the code
needed to do clipping has few differences from the code
needed to do clipping using other re-authoring approaches.
It is also notable that re-authoring AJAX applications re-
quires somewhat more event method code than traditional
apps, which reflects the higher complexity of the interac-
tions that the application needs to automate.

Figure 1a). The interesting aspect of this ap-
plication is that it makes use of the Dojo toolkit’s pro-
gramming interface, which is available through JavaScript
on the web page, to find content within the page to clip and
events that notify the system when it is time to clip. Unlike
the example Backpack application, our BlueMail applica-
tion does not have to use arbitrary delays to wait for con-
tent to be updated. The BlueMail application so far is still
just a proof-of-concept for using AJAX toolkits and sup-
ports just a small subset of BlueMail’s features: logging in,
viewing the inbox, and viewing a message (see Figure 1b).

Usability
In order to get some initial feedback on the design of our
system and the usability of the API, we invited two experi-
enced web programmers from within our research lab to sit
down with the system and attempt to build a simple mobile
application for an AJAX web site of their choosing. Ses-

Ave. Clip
Lines/
Pagelet

AA Flight Tracker* 3 112 35.33 22.33

Traffic #1 3 58 18.33 15.67

Traffic #2* 1 33 26.00 26.00

Facebook Status 4 59 14.75 7.50

BackPack To-Do 3 46 14.33 5.67

BlueMail 3 127 36.33 22.00

AEO Store Locator* 2 81 37.00 27.50

BluePages* 5 174 69.40 44.80

Google Image Search* 3 130 41.00 27.00

Home Depot Store Finder* 2 73 33.00 24.00

Table 1. Breakdown of lines of code for a selection of mobile
applications. # Ps is the number of pagelets in the mobile app.
An * following the name of an application indicates that some
portion of the code was automatically generated by our end-
user authoring environment. The start pagelet code is not in-
cluded in the average lines/pagelet calculation.

sions with both programmers lasted approximately 3 hours,
with the first hour being an introduction to the system
through a written developer guide and a verbal presenta-
tion. Following the introduction, the programmers were
both allowed to starting writing their application and use
whatever tools they found helpful in order to build their
application. Beyond a text editor, the only other tool either
of these programmers chose to use was a Firefox browser
with the Firebug extension to extract XPath formulas for
nodes in various web pages. One programmer chose to
build a traffic report application that would be useful for
his ride home, and the other chose to implement a status
modification tool for facebook (the latter can be seen in
Figure 1d).
The programmers each experienced the typical problems
associated with learning any new API, such as finding the
correct method to use in a particular situation. They also
had some trouble adapting to the idea of automating the
user interface of the web site, as opposed to using more
common approaches. Both spent more time than necessary
to understand the inner workings of the two web sites, and
most of this knowledge was not used in the final solutions.
Each of the programmers had a different initial conceptual
problem with the Highlight system. One expected that we
would use a more traditional page-based model for specify-
ing the transformations between the existing site and the
mobile site, and he did not initially understand the benefit
of the remote control metaphor. The other programmer
noted that our model of grouping a clip method and an
event method within a pagelet was the opposite of the way
he typically thought about developing web pages. We are
considering incorporating his suggested improvements into
a future version of the Highlight system.

COMPARING CODE INJECTION AND HIGHLIGHT
Another means of re-authoring web sites is to inject
JavaScript code into a web page, either on the browser or
through a proxy server, and use this code to perform the
modifications. Code injection, like Highlight, can re-author
sites that include dynamic JavaScript and AJAX.
Code injection modifies the existing page directly, so the
author of the injected code must be careful to not make
modifications that will break the existing page. Changing
the structure of the document, either by adding, removing
or moving elements, can easily break any JavaScript in the
existing page. Thus, code injection techniques seem to
work best for making small modifications to an existing
page, such as adding an extra piece of information or pro-
viding a different interaction for an existing feature. An
informal survey of the Greasemonkey scripts on user-
scripts.org seems to provide some evidence for this claim.
Highlight, in contrast, seems to work best for making large
modifications to a web page.
It is important to note that writing Highlight apps and
Greasemonkey scripts share many of the same challenges.
Both systems are built on top of the same standard web
APIs for manipulating the DOM and receiving events from

the user. Finding the appropriate content to use and identi-
fying the correct set of events to listen to are generally dif-
ficult, and both approaches use the same techniques to
solve these problems.

DISCUSSION AND FUTURE WORK
We have shown that Highlight can be used by program-
mers to create mobile applications from existing web sites
and deploy those applications to mobile devices. The ex-
ample applications that we have shown here demonstrate a
common use of Highlight, which is to modify sites that use
JavaScript heavily into simpler sites that no longer have
any dynamic features. It is possible to create mobile appli-
cations that include JavaScript however, and even to have
those mobile applications make AJAX requests back to the
Highlight server. The Highlight programmer can add this
JavaScript either by copying it from the existing page, in
which case they must ensure that the code will continue to
work on the modified mobile page, or they can write their
own new code and include it in the page. Adding such code
is not easy, however it is not any more difficult than adding
JavaScript and/or AJAX to an existing page. In the future,
we hope to explore mechanisms that can automate the
transfer of code from the existing page to the mobile page
without programmer intervention. The dynamic nature of
JavaScript and the lack of a type system will make this
quite challenging.
Building a Highlight application requires the programmer
to face several challenges: robustness to errors occurring in
the existing site, and brittleness of the application to web
site changes. These problems also exist for most other sys-
tems that re-author or extract web page content, and we do
not provide any new support for addressing them. A ge-
neric solution that may work for Highlight could be to
show the rendered page to the user when an error occurs
and allow the user to indicate how to proceed, perhaps by
indicating to where the desired element has moved. High-
light mobile application descriptions are written in
JavaScript, however. Work will be needed to understand
how to translate corrections identified by the user into
changes in the underlying code.
Security and privacy are also important issues for High-
light, because all of the user’s interactions with a Highlight
application are being replicated in a browser on a proxy
server. This creates an additional security hole for poten-
tially sensitive information. Some of these issues are ad-
dressed by explicitly separating the browser instances for
every session. To the extent that the browser itself is se-
cure, this prevents a malicious application from crossing
the web page boundary and snooping on others. Another
means to ensure privacy is to wipe a browser instance from
the proxy server once its session is complete, including any
cached HTML, cookies, and images. Note that removing
cookies after a session does not break any web sites,
though it does require users to log in every time they use a
mobile application. This problem could be addressed by
having users log in to the Highlight server and maintaining

cookies for each user, however we have not implemented
this. Security between the proxy server and the mobile de-
vice is also an issue. We currently do not use SSL on this
channel, though this could be added in the future.

CONCLUSION
We have explored a new approach to “mobilizing” the web
through re-authoring existing sites using the Highlight sys-
tem. An important innovation in Highlight is that it allows
web sites that make use of dynamic JavaScript and AJAX
to be re-authored to support smaller, task-specific interac-
tions. This is accomplished by embedding a full-featured
web browser inside of a proxy server and using a remote-
control metaphor wherein the mobile browser controls the
proxy browser. We have shown that useful mobile applica-
tions can be constructed using this approach.

ACKNOWLEDGMENTS
Our thanks to the USER group at the IBM Almaden Re-
search Center, our user study subjects, and especially the
CoScripter and BlueMail project members, for their feed-
back on this work.

REFERENCES
1. “Backpack,” 2007. http://www.backpackit.com/.
2. “Dojo: The JavaScript Toolkit,” 2007.

http://dojotoolkit.org/.
3. “Greasemonkey Firefox Extension,” 2007.

http://www.greasespot.net/.
4. Aptana, “Aptana Jaxer,” 2008.

http://www.aptana.com/jaxer.
5. Bickmore, T.W. and Schilit, B.N. “Digestor: Device-

independent Access to the World Wide Web,” in Se-
lected papers from the sixth international conference
on World Wide Web. 1997. Santa Clara, CA:
pp. 1075-1082.

6. Bigham, J.P. and Ladner, R.E. “Accessmonkey: A
Collaborative Scripting Framework for Web Users and
Developers,” in Proceedings of W4A. 2007. Banff,
Canada: pp. 25-34.

7. Bolin, M., Webber, M., Rha, P., Wilson, T., and
Miller, R.C. “Automation and Customization of Ren-
dered Web Pages,” in Proceedings of UIST. 2005.
Seattle, WA: pp. 163-172.

8. Clark, J. and DeRose, S., “XML Path Language
(XPath), Version 1.0,” 1999.
http://www.w3.org/TR/xpath.

9. Faaborg, A., A Goal-Oriented User Interface for Per-
sonalized Semantic Search. Media Arts and Sciences
Massachusetts Institute of Technology, 2006, Boston.
http://alumni.media.mit.edu/~faaborg/files/thesis/draft/
complete/faaborg_thesis.pdf.

10. Google, I., “Google Mobile Search,” 2007.
http://www.google.com/mobile/.

11. Greenlight, “Skweezer,” 2007.
http://www.skweezer.net/.

12. Hartmann, B., Wu, L., Collins, K., and Klemmer, S.R.
“Programming by a Sample: Rapidly Creating Web
Applications with d.mix,” in Proceedings of the 20th
annual ACM symposium on User interface software
and technology. 2007. Newport, RI: pp. 241-250.

13. Hwang, Y., Kim, J., and Seo, E., “Structure-Aware
Web Transcoding for Mobile Devices.” IEEE Internet
Computing, 2003. 7(5): pp. 14-21.

14. Little, G., Lau, T., Cypher, A., Lin, J., Haber, E.M.,
and Kandogan, E. “Koala: Capture, Share, Automate,
Personalize Business Processes on the Web,” in Pro-
ceedings of CHI. 2007. San Jose, CA: pp. 943-946.

15. MDA, “Q3 2006 – Mobile Internet Figures Continue
To Grow,” 2007.
http://www.themda.org/PressReleases/
Page_Press_PressReleases_LatestStats.asp.

16. Monkeygrease, “Monkeygrease: The Server-side
Greasemonkey,” 2007.
http://www.monkeygrease.org/.

17. Nichols, J. and Lau, T. “Mobilization by Demonstra-
tion: Using Traces to Re-author Existing Web Sites,”
in Proceedings of IUI. 2008: pp. 149-158

18. Nusser, S., Cerruti, J., Wilcox, E., Cousins, S.,
Schoudt, J., and Sancho, S. “Enabling efficient orien-
teering behavior in webmail clients ” in Proceedings
of the 20th annual ACM symposium on User interface
software and technology 2007. Newport, Rhode Is-
land, USA pp. 139-148.

19. OPA, “Going Mobile: An International Study of Con-
tent Use and Advertising on the Mobile Web,” 2007.
http://www.online-publishers.org./media/
176_W_opa_going_mobile_report_mar07.pdf.

20. Richardson, T., Stafford-Fraser, Q., Wood, K.R., and
Hopper, A., “Virtual Network Computing.” IEEE
Internet Computing, 1998. 2(1): pp. 33-38.

21. Schwerdtfeger, R.S., Weiss, L.F., and Dutta, R., “Elec-
tronic document delivery system employing distributed
document object model (DOM) based transcoding and
providing interactive javascript support,” 2006. Inter-
national Business Machines Corp.: USA.

22. Stuerzlinger, W., Chapuis, O., Phillips, D., and Rous-
sel, N. “User interface façades: towards fully adaptable
user interfaces,” in Proceedings of UIST. 2006.
Montreux, Switzerland: pp. 309-318.

23. Tan, D.S., Meyers, B., and Czerwinski, M. “WinCuts:
Manipulating Arbitrary Window Regions for More Ef-
fective Use of Screen Space,” in CHI Extended Ab-
stracts. 2004. pp. 1525-1528.

24. Zhang, D., “Web Content Adaptation for Mobile
Handheld Devices.” Communications of the ACM,
2007. 50(2): pp. 75-79.

http://www.backpackit.com/
http://dojotoolkit.org/
http://www.greasespot.net/
http://www.aptana.com/jaxer
http://www.w3.org/TR/xpath
http://alumni.media.mit.edu/%7Efaaborg/files/thesis/draft/complete/faaborg_thesis.pdf
http://alumni.media.mit.edu/%7Efaaborg/files/thesis/draft/complete/faaborg_thesis.pdf
http://www.google.com/mobile/
http://www.skweezer.net/
http://www.monkeygrease.org/

	ABSTRACT
	INTRODUCTION
	RELATED WORK
	ARCHITECTURE
	Prototype Implementation

	DESCRIBING AN APPLICATION
	BUILDING A MOBILE APPLICATION
	BackPack Example Walkthrough

	EVALUATION
	Breadth
	Usability

	COMPARING CODE INJECTION AND HIGHLIGHT
	DISCUSSION AND FUTURE WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

