
Automatically Generating User Interfaces for Appliances
The Personal Universal Controller Project

Jeffrey Nichols
jeffreyn@cs.cmu.edu
Human Computer Interaction Institute
Carnegie Mellon University

Appliances Mobile Devices
Feedback

Abstract Specifi cations

Control

<?xml version=”1.0” encoding=”utf-8”?>
<spec name=”MediaPlayer” version=”PUC/2.2”>
 <labels>
 <label>Media Player</label>
 </labels>

 <groupings>
 <group name=”Controls” is-a=”media-controls”>
 <labels>
 <label>Play Controls</label>
 <label>Play Mode</label>
 <text-to-speech text=”Play Mode”
 recording=”playmode.au”/>
 </labels>

 <state name=”Mode”>
 <type>
 <enumerated>
 <item-count>3</item-count>
 </enumerated>
 <value-labels>
 <map index=”1”>
 <labels><label>Stop</label></labels>
 </map>
 <map index=”2”>
 <labels><label>Play</label></labels>
 </map>
 <map index=”3”>
 <labels><label>Pause</label></labels>
 </map>
 </value-labels>
 </type>

 <labels><label>Mode</label></labels>
 </state>

 <group name=”TrackControls”>
 <command name=”PrevTrack”>
 <labels><label>Prev</label></labels>

 <active-if>
 <greaterthan state=”PList.Selection”>
 <constant value=”0”/>
 </greaterthan>
 </active-if>
 </command>

 <command name=”NextTrack”>
 <labels><label>Next</label></labels>

 <active-if>
 <lessthan state=”PList.Selection”>
 <ref-value state=”PList.Length”/>
 </lessthan>
 </active-if>
 </command>
 </group>
 </group>

 <list-group name=”PList”>
 <state name=”Title”>
 <type><string/></type>
 <labels><label>Title</label></labels>
 </state>

 <state name=”Duration” is-a=”time-duration”>
 <type><integer/></type>
 <labels><label>Duration</label></labels>
 </state>
 </list-group>
 </groupings>
</spec>

Multi-Appliance User Interfaces
Appliances are increasingly being connected together to form
systems, such as a home theater or a presentation room. The
user interfaces for these systems are not connected however,
requiring users to separately control each appliance to get a
desired behavior from the system.

Interface Consistency
The PUC system has a unique opportunity to ensure internal and
external consistency among all interfaces that a user generates, be-
cause each PUC user has their own personal device.

Interfaces can be made internally consistent using the
standard toolkit on each device, like our PocketPC interface
generator does.

Domain-Specifi c Design Conventions
A common problem for automatic generators has been that their
designs do not conform to domain-specifi c design conventions that
users are accustomed to.

Personal Universal Controller System

Abstract
Today’s complex appliances are plagued by diffi cult-to-use and inconsistent
user interfaces.

Some of these problems can be addressed by moving appliance user interfaces
from the appliance to a mobile device, such as a PDA or mobile phone.

I have conducted studies showing that users are twice as fast and make
half as many errors when controlling appliances through a handheld as
compared to using the manufacturers’ interfaces.

I have built a system for automatically generating user interfaces that allow
users to control their appliances. My thesis addresses some of the issues that
arise when automatically building appliance interfaces for end-users.

Examples of domain-specifi c conventions
in appliance interfaces

Smart Templates

Allow hand-designs for conventions to be integrated into an auto-
designed user interfaces.

Standardize in advance on a set of specifi cation restrictions for
language groups that should be rendered conventionally.

Because templates are defi ned in terms of the primitive language,
interface generators are not required to implement each template.

I have defi ned templates for:

• date • datetime • dimmer

• image • image-list • media-controls

• mute-mic • mute-speaker • power

• phone-dialpad • time-absolute • time-duration

• volume • list-add • list-delete

Smart Templates are designed to be fl exible, allowing for different
underlying representations. This parameterization allows templates
to cover the common and unique functions of each appliance.

In many systems, a designer will add conventional designs to the
user interfaces after generation. This is not a viable approach in my
system.

media-controls Example

Used for controls of a media stream, such as sound or video.

The specifi cation example to the left shows an example of using
this Smart Template in an appliance specifi cation.

Example renderings of the media-controls Smart Template

Similarity Problem

How can we determine that two appliances are similar from their
specifi cations?

It is diffi cult to conclusively know whether two functions from
different appliances are the same because there is very little
semantic information in the spec. language

Can estimate similarity based on properties of state variables

• Smart Template

• Name

• Group Name

• Labels

• Type

May be able to improve the estimate by looking at relationships
between multiple similar variables

Consistency Problem

How do we make user interfaces consistent for similar appliances?

If the appliances only share a few
similar functions, then try to reuse
widgets. For example, always use a
slider for volume even if a combo
box would normally be used.

If the appliances share a small set
of grouped functions, then try to
use the previous interface for that
group. If necessary, use the panel
structure the group was previously
in.

If the appliances are mostly similar,
try to put the functions of the new
appliance into the organization of
the old interface.

Interfaces can be also be made externally consistent. E.g., a newly
generated interface for a VCR in the conference center should look
and feel like the interface for my VCR at home.

Creating externally consistent interfaces can be broken into two
problems:

Improving Interfaces with the PUC

Generate an interface that aggregates all functions into one set
of screens organized by screen instead of appliance

Automatically create macros for frequently used functions

E.g., “Play DVD” would:

 1. turn on television, DVD player, stereo

 2. turn off VCR

 3. set the TV and stereo sources to the DVD player

 4. instruct the user to insert a DVD (if necessary)

 5. play the DVD

Extending Appliance Descriptions

Track inputs and outputs of appliances, and tag each state
variable and command with information on how inputs and
outputs are modifi ed

Include partial task information that can be taken from each
appliance and constructed into a full task specifi cation for the
entire system.

This information can be combined to build interfaces for
systems of appliances.

Acknowledgements

I would like to thank Brad Myers for advising me on this work.
This work was funded in part by grants from NSF, Microsoft,
General Motors, and the Pittsburgh Digital Greenhouse, and
equipment grants from Mitsubishi Electric Research Laborato-
ries, VividLogic, Lutron, and Lantronix. The National Science
Foundation has funded this work through a Graduate Research
Fellowship and under Grant No. IIS-0117658.

Use mobile devices to control appliances. The following diagram
shows how the Personal Universal Controller (PUC) system
separates the interface from the appliance.

There are four pieces to the PUC system:

Abstract Specifi cation Language

The language is designed to allow for complete specifi cation of any
appliance. I have put signifi cant effort into ensuring the language
is as concise and easy-to-use as possible.

The language is XML-based with full documentation at:
http://www.cs.cmu..edu/~pebbles/puc/specifi cation.html

The example to the right illustrates almost all features of
the language.

Automatic Interface Generators

I have built automatic interface generators for multiple platforms
(PocketPC, Smartphone, and desktop) and modalities (graphical
and speech).

Two-Way Communication Protocol

My communication protocol allows for better appliance UIs by en-
abling the controller to show the appliance state. For example, this
allows the UI to gray out commands that are disabled.

Appliance Adaptors

The PUC system is able to control real appliance through adaptors,
which translate proprietary protocols into the PUC protocol.
Adaptors have been built for specifi c appliances, like Windows
Media Player, and general protocols, like UPnP and AV/C.

