
Mining Web Interactions to Automatically Create Mash-Ups

Jeffrey P. Bigham
Dept. of Computer Science

University of Rochester
Rochester, NY 14627 USA
jbigham@cs.rochester.edu

Ryan S. Kaminsky
Dept. of Computer Science & Eng.

DUB Group
University of Washington
Seattle, WA 98195 USA

rkamin@cs.washington.edu

Jeffrey Nichols
USER Group

IBM Almaden Research Center
650 Harry Rd

San Jose, CA 95120 USA
jwnichols@us.ibm.com

ABSTRACT
The deep web contains an order of magnitude more infor-
mation than the surface web, but that information is hidden
behind the web forms of a large number of web sites. Meta-
search engines can help users explore this information by
aggregating results from multiple resources, but previously
these could only be created and maintained by programmers.
In this paper, we explore the automatic creation of meta-
search mash-ups by mining the web interactions of multiple
web users to find relations between query forms on differ-
ent web sites. We also present an implemented system called
TX2 that uses those connections to search multiple deep web
resources simultaneously and integrate the results in context
in a single results page. TX2 illustrates the promise of con-
structing mash-ups automatically and the potential of mining
web interactions to explore deep web resources.

ACM Classification H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General Terms Design, Human Factors, Algorithms

Keywords: Mash-Ups, Programming-by-Example, Meta-
Search, Deep Web, Web Forms

INTRODUCTION
The deep web contains an incredible amount of information
that is only accessible by querying web forms, making it dif-
ficult for web crawlers to automatically access. As a result,
users are usually restricted to accessing one resource at a
time instead of aggregating information from multiple web
sites simultaneously, and must use the interfaces provided by
each individual site. Meta-search engines aggregate results
across specific sites, but must be created and maintained by
programmers. Prior approaches to the difficult problem of
crawling the deep web and creating meta-search engines au-
tomatically have primarily constructed relations by examin-
ing the low-level HTML form schemas within web pages.
This paper introduces TX2, a browser extension that finds

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’09,, October 4–7, 2009, Victoria, British Columbia, Canada.
Copyright 2009 ACM 978-1-60558-745-5/09/10...$10.00.

The KiteRunner

The Kite Runner

The Kite Runner

The Kite Runner

Combined Results

Figure 1: The web usage of multiple web users often
implicitly connects the forms of related web resources.
In this example, two users have input the same query
(“The Kite Runner”) into different search forms: one
on the Seattle Public Library and the other on the King
County Public Library. TX2 can automatically make
available results from both resources in response to a
query on either.

relations between query forms by mining the interaction his-
tory of many web users and also allows users to explicitly
map query forms through interactive demonstration.

A meta-search mash-up is a mash-up that aggregates the search
results of form queries to multiple deep web resources. TX2
makes possible the automatic creation of meta-search mash-

203

ups by mining the observed interactions of its users. Prior
work in this area has required people to explicitly create mash-
ups, most often programmers using programming tools. Some
tools are designed for end users, such as d.mix [9], Yahoo
Pipes [24], Clip, Connect, Clone [8], and Vegemite [12],
which provide interfaces that support the creation of certain
mash-ups without low-level programming. Creating mash-
ups automatically has the potential to bring the benefits of
mash-up creation to not only technically-savvy end users,
who are beginning to have access with recent tools, but also
to anyone who can use the web. To the best of our knowl-
edge, TX2 is the first system to use recorded interactions to
automatically connect deep web resources.

To illustrate TX2’s motivation, consider the following ex-
ample illustrated in Figure 1. In the Seattle area, there are
multiple libraries available at which the public can check out
books, including the University of Washington Library, the
Seattle Public Library, and the King County Library. Any
single library might not yet have a particular hot new release
or obscure title, but collectively the chances are much higher.
To find their desired book users might need to search the web
sites of all three libraries. By entering the same value into the
forms on multiple sites, users implicitly connect the forms on
each of these resources. TX2 leverages recordings of inter-
actions such as these to create custom meta-search mash-ups
that present users with results from all three resources.

Importantly, a single user does not necessarily need to enter
the same information into each of the different forms. If web
interactions from multiple users are shared, TX2 can facili-
tate the discovery of new resources. Alternatively, users who
want to create new meta-search mash-ups could create them
explicitly by submitting the same search queries on each of
the three sites.

TX2’s motivation includes the following:

• Creating mash-ups and meta-search engines is costly:
Because TX2 creates mash-ups automatically, there is no
overhead to getting started using TX2. Prior meta-search
mash-ups created for exploring the deep web required pro-
grammers to explicitly define the meta-search capabilities
of each site and manually specify how they should be con-
nected. This meant that meta-search was primarily only
available for popular sites and sites at the long tail lacked
meta-search capabilities.

• The best sites often change:
The best sites for providing a specific kind of informa-
tion often change, but many users remain unaware. For
instance, in the past fifteen years, the list of the best search
engines has changed multiple times1. Among travel sites
the changes have been even more dramatic. A few years
ago, the airlines realized that they would prefer customers
to shop directly from them instead of through sites like
Travelocity and Expedia, and began guaranteeing that the
lowest prices would be found on the airline sites them-
selves. This led to the prominence of meta-search sites like
kayak.com, which today most often lists the lowest prices.
TX2 allows the easy discovery of such a transition. As

1The authors note sadly the fall of hotbot.com

more people switch to using a new site for a particular kind
of information, TX2 will begin offering results from those
new sites to users of the old sites automatically.

• People want great interfaces AND great information:
Some web site interfaces work better for people with spe-
cific needs. For example, some sites may work better on
small screens or may be more accessible to blind users
(highly-dynamic sites are often difficult for screen read-
ers to process). TX2 lets users independently choose the
interface and the sources of their information.

TX2 makes the following three contributions:

• An algorithm for mining meta-search mash-ups from the
web usage logs of one or many web users, and a study
using real data demonstrating that this approach can work
in practice.

• A general method for automatically identifying and com-
bining the results from queries to multiple web sites, al-
lowing client-side meta-search mash-ups.

• A general illustration of the promise of using recorded in-
teractions for both automatically creating meta-search mash-
ups and for exploring deep web resources.

In the remainder of this paper, we will first discuss related
work. Then we will present a study showing that users are al-
ready implicitly defining meta-search mash-ups and describe
our new techniques for extracting these relationships. Next
we will discuss a tool which brings these new mash-ups to
users with a browser extension that records user interactions,
automatically discovers similar deep web resources across
different sites based on the recorded user interactions, issues
queries to multiple similar resources simultaneously, and then
presents them to the user in place on the site with which they
are already familiar.

RELATED WORK
Work related to TX2 falls into two general areas: existing
tools for exploring deep web resources, and work that helps
users collect, manipulate, and mash-up web content.

Exploring the Deep Web
The deep web is that part of web content that is accessible
only after submitting a web form. Existing tools for explor-
ing the deep web resemble traditional, surface web crawlers
[14], and have focused on the following two tasks: (i) iden-
tifying deep web resources that should be connected, and (ii)
matching the web forms of multiple resources together. TX2
leverages user interactions to accomplish these difficult tasks.

Deep Web Crawlers HiWE [19] and MetaQuerier [4] seek
to automatically identify both web forms of interest and the
data types of their fields. This is accomplished by analyzing
the content of web pages, including both the human and ma-
chine readable labels associated with forms and their fields.
When successful, these systems can connect the web forms
of related resources together. TX2 uses recorded user in-
teractions, in addition to page content, to find both related
resources and the connnections between their input fields.

Connecting deep web resources requires both finding the re-
lated deep web resources and matching the schemas of web
forms to known schemas automatically [5]. This is difficult

204

for a number of reasons, including that form fields are not
always assigned meaningful labels and many labels are re-
peated (for instance, “Keywords:”). The web interactions of
users reveal both types of information. To the best of our
knowledge, TX2 is the first system to mine user interactions
to link deep web resources together.

User interactions have been shown to reveal much about web
resources. For example, Adar et al. identified a number of
distinct patterns in web site usage logs and associated them
with higher-level semantics of the sites [1]. TX2 looks at web
usage at a lower level, using observed interactions with web
page components to infer semantics of how they are used,
and which components on other web sites might be related.

Meta-Search Engines Some of the earliest (and most popu-
lar) tools designed to explore the deep web were meta-search
engines. Meta-search engines let users search multiple deep
web resources simultaneously. One of the earliest examples
was MetaCrawler [20], which aggregated and reranked the
results from multiple search engines available at the time.
Shopping meta-search sites followed soon after, aggregating
product information from many shopping sites to help users
find the best deal. Examples include kayak.com, which ag-
gregates the results of multiple airline sites, and MySimon
and Froogle, which aggregate pricing information from mul-
tiple shopping sites. Many libraries include search options
across other libraries, although interestingly, these relation-
ships often only loosely match to geographic locality. (The
Seattle Public Library and King County Library do not pro-
vide an option to let users search one another’s holdings even
though Seattle is located in King County.) Numerous sites
that one might like to be able to search together do not have
meta-search provided for them.

Tools for End Users Several end user tools help users ex-
plore deep web resources, but have focused on helping users
explore one deep web resource at a time. Sifter detects and
augments the interfaces for existing result pages on a sin-
gle deep web resource [10]. Transcendence helps users is-
sue multiple queries to a single deep web resource in order
to facilitate previously unsupported queries [2]. Neither lets
users aggregate the information from multiple resources si-
multaneously. To the best of our knowledge, TX2 is the first
tool that automatically aggregates information from multiple
deep web resources.

Web Mash-Ups
Web mash-ups combine information from multiple sources.
Existing systems enable both programmers and end users
to flexibly manipulate, store and merge web data informa-
tion. User scripting systems, such as Greasemonkey [18]
and Chickenfoot [3], modify web pages according to user
specifications. Piggy-Bank users can write scripts to extract
information from web pages and store that information in a
semantic web database [17] and Solvent facilitates the cre-
ation of Piggy-Bank scripts with visual tools [21].

Other systems extract information from multiple web pages
and integrate results together on a single page. Web Sum-
maries [6] can explore multiple links selected by users but
does not address form submission, required for exploring

the deep web. The cloning feature of Clip, Clone, Connect
(CCC) [8] lets users submit multiple form queries, but these
mash-ups must be explicitly created and results are not added
in the context of an existing web site. TX2 makes the pro-
cess of creating mash-ups transparent to users; from the user
perspective, new results simply appear along with the results
they would have seen otherwise.

Many systems let end users create mash-ups. Marmite [23]
and Vegemite [12] help users select web data and then ma-
nipulate it in a familiar interface similar to a spreadsheet. Ya-
hoo! Pipes [24] uses the visual metaphor of a pipe in a pro-
gram that enables users to connect web resources . d.mix [9]
copies parametric versions of mashed-up web elements into a
spreadsheet interface for manipulation by users. Reform [22]
lets programmers and end users work together - program-
mers define mash-ups that can be applied to many different
sites by end users . End users can apply mash-ups with rel-
ative ease, but each new type of mash-up requires program-
ming. TX2 automatically creates broadly-applicable meta-
search mash-ups based on user interaction without program-
ming. Although these interfaces make the creation of mash-
ups more accessible to end users, they require end users to
expend effort in creating mash-ups and understand the un-
derlying concept of how mash-ups are created. Because TX2
has the potential to create mash-ups without explicit user in-
teractions, even novice users could benefit from it.

Web macro recorders, such as Creo [7], PLOW [11], Co-
Scripter [13] and Turquoise [15], could be used to collect re-
sults from a single web site but cannot merge the results from
multiple sites. In TX2, users define forms that they want to
explore by searching with those forms, but they do not need
to be aware of an explicit recording phase.

SYSTEM DESCRIPTION
TX2 consists of the following three logical components:

• Recorder - records user interactions using technology bor-
rowed from CoScripter [13].

• Connector - collects user interactions and provides a ser-
vice that returns a set of forms from other web sites that
are similar based on interactions on the current web site.

• Integrator - collects results from multiple related resources
and combines them on a single existing results page on-
the-fly, allowing users to control how and when they are
displayed.

All three components are currently implemented within an
extension to the Mozilla Firefox web browser. Eventually,
we plan to deploy the connector as a web service where data
will be incrementally added by TX2 users to a shared repos-
itory (Figure 2). In anticipation of this, the connector algo-
rithms and data structures are designed to work online and
incrementally. For testing purposes, we added an existing
history of interactions from multiple users to the connector.

To better illustrate how the system works, we will explain its
functionality in the context of the following scenario: TX2
user Vella is searching for a flight on the United Airlines
web site. At a high-level, Vella will visit united.com, en-
ter some values into various fields of the reservations form,
and click the “Submit” button. At this point, her browser

205

Client Firefox Extension

Local or Remote
 Web Service

connections

form inputunited.com

expedia.com delta.com

TX2 uses the
connections
retrieved from a
web service to
issue simultaneous
queries on multiple
similar sites when
users search on
one of them.

Connector

Recorder

Integrator

Source Form

Figure 2: The TX2 Firefox extension (i) retrieves con-
nections between different deep web resources from
the TX2 web service that has mined them from user in-
teractions, and (ii) applies these connections as users
browse the web to automatically create meta-search
mash-ups.

will perform the normal HTTP request with united.com, but
simultaneously TX2 will contact the connector, retrieve a list
of matching forms, submit those forms with the data Vella
entered on united.com, and collect new results from the re-
sulting submission. When the results page for united.com
appears, TX2 will integrate results from the other sites into
the results listed on united.com. The low-level details of how
the system works will now be discussed.

The Recorder
TX2’s recorder is built on top of the CoScripter platform for
recording and playing back user interactions with web pages
[13] and uses CoScripter’s ActionShot extension for contin-
uously recording users’ web activity. Unlike some other web
recording frameworks that record web history based purely
on page views and URLs, CoScripter records low-level inter-
actions, such as clicking on a button or entering text into a
textbox. CoScripter also represents these events in a pseudo-
natural language format known as “slop” which includes a
string-based label identifying the target of an interaction and
also a string-based value to enter into that target where ap-
plicable. The Connector’s data mining algorithms make use
of the information within these “sloppy” descriptions, along
with other contextual information, to identify potentially match-
ing query forms on different web sites.

In the context of our scenario, the recorder is always turned
on and recording Vella’s interactions with her browser. When
she visits united.com, the system records that she typed the
URL “united.com” into the browser window, and then en-
tered the airport codes “SEA” and “BOS” into the “From”
and “To” textboxes, respectively. It then records that she en-
tered her departure and return dates into the appropriate text
boxes. When Vella clicks the “Submit” button, the system
bundles together all of the actions recorded following the en-

try of the URL, because that step is the most recent step that
led to a new web page. The bundled steps are then sent to
the connector, along with meta-data about each of the steps
(such as XPaths of the targets). This information is used to
find other web sites with forms similar the one Vella com-
pleted on united.com.

The continuous background recording functionality needed
in this scenario was added to CoScripter by ActionShot, which
also provides a user interface for interactively browsing and
searching through this history. Currently, ActionShot only
allows users to explicitly share portions of their web history
with friends through social networking sites and e-mail. It
does not automatically send recorded information to a cen-
tral server. In the future we may add this functionality, but
will carefully consider the privacy and security concerns of
deploying such a system before doing so. Some of these is-
sues are discussed later in the “Discussion” section.

For this paper, we asked six regular users of the ActionShot
prototype to donate three months of the browsing history Ac-
tionShot had collected for them. This data was primarily col-
lected on work machines, however two of the participants
recorded data on their primary machine (both laptops). We
did not clean or anonymize this data in any way after collec-
tion, however the users were well aware of the eventual use
for this data and were allowed to delete any sequences of ac-
tions from their data that they did not want to share. The re-
sulting data set contains 13,159 interactive steps across 5459
web pages. Multiple interactive steps were taken by partic-
ipants on 1796 of those pages. Most of these presumably
involve entering data into forms because the only recorded
interactive steps that do not involve forms are clicking on
links, which usually cause a new page to load.

The Connector: Mining Recorded Interaction Histories
The connector takes as input a sequence of interactive steps
that a TX2 user has performed on a query form (the source
form) and meta-data for each step, including the XPath for
each form field. The connector’s output is a ranked list of po-
tentially matching forms (the target forms). For each target
form, a mapping is given between the XPaths of the fields on
the source form and the XPath of the fields on the target form.
The connector can also return a sequence of instructions in
CoScripter slop to execute on each of the target forms, how-
ever TX2 currently only makes use of the XPath mapping.

The connector performs two functions: data extraction and
aggregation, and matching over the aggregated data.

Data Extraction and Aggregation The data extraction and
aggregation component operates online as new matching re-
quests are received, generating and updating a set of basic
data structures to facilitate matching requests. The data ex-
traction and aggregation process is comprised of the follow-
ing steps:

1. Filter individual actions and generate page sets.
Recorded actions from users are added to the repository
as a stream. Normally, user interaction data submitted to
the system would be from a single page, however the data
collected by our test users spanned many pages and sites.
In order to segment the test data, the stream of actions were

206

Name Type Description
Label String A human-readable label identifying the action’s target element
Value String The value entered into the target element
Date Boolean True if the value entered contains a date
Airport Code Boolean True if the value entered contains an airport code
Airport Full Name Boolean True if the value entered contains a standard airport full name
Zip Code Boolean True if the value entered contains a zip code
Page Title String Array An array of all words in the page title that are five characters or longer
Label Keyword String Array An array of all words in the label that are five characters or longer

Table 1: Feature generators implemented as part of the TX2 data matching component.

first split into sets of contiguous actions that occurred on
a single page URL. Each of these sets is called a “page
set.” Any page sets containing only a single action were
thrown out, as we assume a form interaction must involve
at least two form elements (a textbox and a submit button,
for instance).

When Vella requested matches, the five interactions that
she sent were bundled into a new page set by the system.

2. Feature generation for actions and page sets.
TX2 uses “feature generators” to extract potentially mean-
ingful information about actions. For example, the label
generator attempts to extract a human-readable string label
from each action. If a label can be found, the label value is
associated with the action. We have implemented several
feature generators for semantic types, which are described
in more detail in Table 1.

All of the actions that Vella completed on united.com in-
volved elements with associated labels - the “From”, “To”,
“Departing” and “Returning” textboxes and the button la-
beled “Search.” In addition, Vella entered strings of type
“airport code” into two textboxes and strings of type “date”
into two others. Our feature generators can detect these se-
mantic types and adds the appropriate features to the ac-
tions contained within Vella’s page set.

In order to facilitate matching, features are aggregated by
data structures that contain actions, such as the script mod-
els and meta-steps discussed in the next section.

3. Script model generation
At this point, we have a long list of many page sets, some
of which may describe different interactions on the same
page. We start by grouping page sets by the URL that they
operate upon, and from these groups we generate an ab-
stract model of a script that acts on a page. We make three
assumptions when generating this model: (i) there is only
a single query form on this page and thus all actions in all
page sets must be operating on the same form, (ii) actions
in different page sets that target the same label must also
target the same element, and (iii) the order in which actions
occur on the page (except for clicking the final submit but-
ton) is not meaningful.

The first assumption is necessary because ActionShot does
not currently provide sufficient information to distinguish
between operations on different forms on the same page,
although this could be obviated if more information was
recorded. The second assumption is reasonable because

CoScripter’s labeler generates a unique label for each el-
ement. The third assumption is reasonable for most web
forms, although examples exist that violate it. For exam-
ple, some pages update the options available in one combo
box based on a selection in another combo box. It is likely
possible to use ordering information in the example scripts
to infer ordering dependencies among actions, however we
leave this for future work. These assumptions all appear
reasonable in practice, based on our repository.

A script model is generated for a given URL by iterating
over all of the actions in the page sets that operate on that
URL. Actions with the same label are grouped together as
a “meta-step.” Each meta-step then represents a step that
might be taken in the script model and aggregates within
itself multiple example actions. For instance, the meta-step
recorded for Vella’s interaction with the “From” textbox on
united.com would contain not only the value “SEA” that
she entered along with a true value for the “airport code”
feature, but also the values entered by other visitors to the
site, for example (“CMH”, true) and (“Tacoma”, false).
When this process ends, each script model is populated
with a set of meta-steps.

The end result of the data extraction and aggregation process
are the script models which facilitate matching. These al-
gorithms can be executed incrementally by generating new
features and updating existing script models with new action
data as it is acquired.

Matching Aggregated Data The matching algorithm is exe-
cuted when a query for matching forms is received, such as
when Vella submitted her form on united.com. This query
contains the set of actions performed on the source query
form in the CoScripter sloppy format. The query actions are
first mapped to a script model in the repository using the
source query form’s URL. If a script model already exists,
then the query actions are added to the model incrementally
using the process discussed above. If no script model ex-
ists for the form, then a new model is created from the query
actions. Features are also generated for all of the new ac-
tions using the method discussed above. Note that the act
of querying our service has the side benefit of updating our
knowledge base.

Once the query has been associated with a script model, the
connector attempts to identify related forms with a two phase
process: first, it attempts to identify other script models that
may be related, and then attempts to match the meta-steps on
the source script model with those in the target script model.

207

Identifying potential matches at both the script model and
meta-step levels is performed using the same basic process.
First, features are aggregated from all constituent actions in
the objects being compared. Second, features are compared
and match counts are generated reflecting the number of fea-
tures that were shared by the object. Features are weighted
differently when generating the match count. For example,
semantic features such as airport or zip codes are weighted
more highly than labels or values. Actions can be found to
match one another based on the labels assigned to their target
elements, values provided as input, or the inferred semantic
types. Features change infrequently and match counts can be
cached for improved performance.

The first matching step is to identify additional script models
that may be potential matches for the source script model. A
list of possible models ranked by match count is generated
using the matching process described above. In our current
system, any model with a match count greater than zero is
included in the list, which seems to be reasonable given the
size of our data set. As the amount of data in the system in-
creases, it would likely be necessary to set a higher threshold.

For each potential target script model, we then want to match
meta-steps in the source model to meta-steps in the target
model. It is possible that not every source meta-step is rel-
evant to our query. Many forms contain optional fields and
not all meta-steps may have corresponding steps in a query.
In our implementation, we make an assumption that only
the actions mentioned in the query are relevant and must be
matched. Other meta-steps in the source model that do not
have corresponding actions in the query are ignored for the
remainder of this process.

In order to determine a match between the meta-steps in the
source and target script models, we construct a “pair list,”
which contains every possible pair of source meta-steps and
target meta-steps, and generate match counts for each pair in
the “pair list.” We also construct an empty “match list” to
hold matching pairs. We assume that only one source meta-
step can match one target meta-step (and vice versa). We
then find the pair in the “pair list” with the highest match
count, remove it from the “pair list,” and add it to the “match
list.” We then remove all other pairs from the “pair list” that
contain either of the meta-steps in the matched pair. This
loop is performed until the “match list” contains a pair for
every step in the source query or until all pairs in the “pair
list” have match counts of zero. If the former condition is
true, then we have found a matching form. From the pairs
in the “match list,” we can return either CoScripter slop cor-
responding to the target form or a set of XPath mappings
between the source and target form.

The matches returned to the TX2 client may still not all be
correct. For example, a matched target form may require
more values than were specified in the source query. The
TX2 client has enough information to attempt to submit the
target form, but in this case the form will fail. This is typ-
ically easy for TX2 to detect and such failures can often be
ignored as we might assume a form failure indicates that the
target form was not an adequate match for the source query.

The Integrator: Facilitating Meta-Search on the Client
The main function of the integrator is to merge the existing
results of a web query with the results from additional, re-
lated web resources returned by the connector. TX2 uses
multiple crawling threads simultaneously to quickly retrieve
the results from connected sites to form the meta-search mash-
up. These crawling threads use full browser windows (hid-
den from the user) that both fully render the retrieved content
and execute any scripts contained on the downloaded pages.

TX2 first detects form input on each page that is loaded, uses
the connector to find matching forms, and finally submits
input to each matching form using one of several crawler
threads running in the background. The main difficulty here
is handling the wide diversity in how forms are created and
input is sent to web servers. The crawlers used by TX2 fully
load the web page containing each form that has matched. It
then fills out each field of the form, calls any scripts that need
to be called prior to submitting, and finally submits the form.

Because the TX2 crawlers go through the entire web trans-
action - from loading a form, to submitting it, to viewing the
results - TX2 is robust to a variety of different web forms
(although not all, as will be discussed later in the “Evalu-
tion” section). Forms can use HTTP GET or POST, submit
via programmatic calls, or even set special variables using
scripts before the form is submitted. A server-side script will
observe little or no difference between TX2 and a live person
filling out and submitting a supported form.

Detecting and Integrating Results The TX2 crawlers as-
sume that a list of results will be returned after a form is sub-
mitted. Results are, for instance, the search results returned
by Google, the flight options returned to Vella by united.com,
or the products returned by Amazon. TX2 uses the repeating
DOM structures characteristic of submission results to auto-
matically select individual result fields.

To find an initial list of likely parent nodes, TX2 uses a heuris-
tic similar to that used by Sifter [10]. In this iterative process,
TX2 starts with an initial list of links and during each round
adds a “../” to the current XPATH, proceeding until a smaller
number of nodes is selected. This process helps find the most
general result that maximizes visual layout while preserving
the cardinality of the set of matching records.

TX2 next selects a number of fields from within the results
of the crawler browsers that are either links or identified se-
mantic types (currency, numbers, or names). It then identi-
fies which of these fields are also present in a majority of the
other records. Results not containing at least 80% of these
popular fields are pruned. This two step process includes as
many results as possible without adding content that is un-
likely to be results.

TX2 preprocesses each document that it loads to improve se-
lection accuracy [2]. First, TX2 adds additional structure to
pages that express results as sequential patterns of elements,
instead of as separate DOM elements. Sequential patterned
elements are often difficult for DOM-based extraction sys-
tems to interpret correctly [10]. To address this problem,
TX2 uses a recursive process inspired by Mukherjee et al.

208

[16] to add additional elements to the DOM to accurately ex-
press records characterized by repeating elements. A second
preprocessing step promotes text nodes containing common
semantic types to element nodes to ensure that they can be
chosen as fields.

Content on many web pages changes after the page is loaded.
TX2 crawlers can integrate results from dynamic, AJAX-
driven deep web resources. As an example, a flight search
on expedia.com first returns in a page that asks users to wait
for their results. Only later is the page populated with flights
that have been found. It is intractable to determine when a
dynamic page has finished updating in a general way, but
TX2 uses a heuristic that lets it incorporate new results with-
out making the user wait for results that may never come.

If, after a form submission, no results are detected, each
crawler thread waits a short amount of time (currently 30
seconds), periodically checking for new results. If no page
changes occur and no new pages load during this time, TX2
assumes that no new results will be added. Because multi-
ple crawling threads run in parallel, the user does not have to
wait on results from this process to receive results from the
other sites that are being searched in the background.

MATCHING RESULT STRUCTURE & VISUAL STYLING
TX2 can present results in two ways: (i) preserving the orig-
inal appearance of each result on the page from which it was
taken and (ii) matching the appearance of each result to the
visual styling of the page on which it is displayed.

Preserving the Visual Styling of Source Web Site
For clarity of result provenance, TX2 defaults to presenting
results in their original formatting. Before each result is im-
ported from its crawler browser, its styling is hard-coded into
the element. This step captures and preserves styling inher-
ited from nodes higher in the DOM tree.

The proper visual display of elements may also depend on
styling associated only with their parents in the tree. For in-
stance, a result element may use a light-colored font which
is only visible because a parent uses a dark-colored back-
ground. To facilitate correct display in such situations, TX2
travels back up the DOM from each result, collecting the
style information of each parent. It then synthesizes these
separate styles into a single style. A new container node is
added as a parent to each result and assigned that style.

Matching Visual Styling
To preserve the appearance of results, TX2 can also attempt
to match the visual styling of new results to those on the page
to which they are added. This makes Google results look like
Yahoo results or results from united.com look like those from
delta.com. In many cases, the origin of a result does not di-
rectly determine its utility, and, for users accustomed to a
particular presentation style, that style might be more pre-
ferred or understandable. Users may prefer the information
on one site but the interface of another.

Even results that are visually similar may have very differ-
ent underlying structures, making mapping one result to an-
other non-trivial. The algorithm used to match one result to
another is based on the following observations. First, results
usually contain some information that is more important than

the rest - for instance, a link to additional information or a
price is likely to be more important that other text. Second,
the structure and order of presentation is often (but not al-
ways) consistent across multiple related sites.

TX2 combines visual styling and DOM structure to map each
result to the template result. The first step is to construct a
template node from the results on the presentation site. To
create this node, TX2 individually compares each result node
with every other result node, checking to see if each XPATH
element from the first result appears in the second. It com-
putes the overlap between each pair of nodes, and sums them
together to derive a final score for each node. The node with
the highest score is likely to be most similar to the other re-
sults, and is in that way the most typical node. This node is
used as a template for creating the style of nodes gathered
from other sites.

A deep copy of the template node is made for each result ex-
tracted from another site, and the extracted node’s content is
matched to the template node. This is done using a greedy
algorithm. Limited semantics are added to both nodes, and
matches are considered in the order of links, semantic types
(currently consiting of currency, URL, and numbers), and,
finally, all text nodes. All text and image content in the ex-
tracted node are added to the template node, regardless of
whether a good match was found, helping to prevent users
from missing out on information when the matches fail. Al-
though the success of this approach varies from site to site,
it is reliably able to match links and semantic types, which
are likely to be most important, and place this content in the
appropriate place in the template node.

Authoring New Interfaces to Existing Sites
TX2 can be used to create new interfaces for existing sites.
To create a custom meta-search mash-up, authors first create
a new form that asks for the same information as the interface
to be replaced and then presents the results in a desirable
format. To connect an existing resource to the new one, they
just use both forms to search for the same information.

Applications of this model include creating custom versions
of web sites that are more accessible or usable for certain
populations (for instance, blind or cognitively impaired indi-
viduals), or creating completely custom mobile versions of
existing resources. For example, if users found that the At-
lanta Public Library worked better on their small screens than
the Seattle Public Library, they could choose to have library
results displayed using the Atlanta interface using a mobile
implementation of TX2.

USER INTERFACE
TX2 users do nothing other than what they normally would
in order to create and use meta-search mash-ups. Users just
search on existing sites and, if the TX2 web service finds a
match, it will search those sites with the user’s query terms
in the background. If multiple sites are searched, TX2 adds
an interface to the page that lets users manipulate the new
results (Figure 3). Results from each site are interleaved.

The source of each result is shown both by a color-coding
and a source title shown above and to the right of each result.

209

(iii) Selecting Only Results Only From Live.COM

(i) Original Interleaved Results
(ii) TX2 Interface Added into Page

Figure 3: The result of searching Google with the query “search engine” when using TX2. (i) Results from Google, Live,
and Yahoo Search are all included on the single results page in the context of the Google results page. The source of
each is identified by a title and by a color-coding. (ii) Users can change the order of the results returned or filter out
sources that they do not want using an interface embedded into the page. (iii) The users has opted to show only Live
results on the Google Results page.

These titles are parsed automatically from each site on the fly
using the title of each search results page as a base. If the title
contains properly capitalized words, words containing only
lowercase letters, or stand-alone punctuation (for instance, -
), are removed.

Because TX2 determines the structure of results, users can
manipulate them within the context of the host results page
using provided controls. Currently, they can reorder results
according to provenance, making them appear sequentially,
interleaved or in reverse order. They can also choose to show
or hide results from particular sources, something which TX2
could use to learn which sources are preferred either collec-
tively or by individual users.

EVALUATION
To determine the feasibility of our approach, we conducted
evaluations of both the data mining matching algorithms and
the content matching algorithms.

Data Mining Algorithms
To understand the behavior and accuracy of our matching
system, we first evaluated it on manually-created matches.
We created a data set for testing by manually recording the
process of filling in seven different query forms on three dif-
ferent categories of web sites. For the categories, we chose
Libraries, Travel Sites, and General Search sites. Within the
Library category, we recorded queries at the US Library of

Congress web site and the Seattle Public Library. Within
the Travel category, we recorded queries at kayak.com, orb-
itz.com, and travelocity.com. For General Search we recorded
queries of Google and Yahoo. We added this manually-recorded
data to our existing corpus, so that we could test both our per-
formance on the target sites and see whether any other sites
from our corpus matched the manually-recorded sites.

TX2 was able to match the manually-recorded sites in each
category with one another, and also find matches in the ex-
isting corpus. For example, southwest.com was found as a
match for the various travel sites, the Santa Clara Library
web site was found as a match for the other two library web
sites, and the generic search engines also matched with many
of Google’s other specialized search engines, such as Google
News and Google Image Search. In a few instances, un-
wanted matches were also found. For example, the real es-
tate web site redfin.com was common in our corpus and was
matched with the generic search sites.

We also found some problems with the matching algorithms
which will need to be considered in the future. Travel sites,
while generally matched by TX2, are particularly difficult for
our matching algorithms to handle completely because most
sites make use of a custom date picker interface. This inter-
face is rarely recorded correctly by our current framework,
and thus interactions with it are not appropriately matched.

210

Furthermore, because these widgets are often so different
across different sites, we would no doubt have difficulty ap-
propriately matching the steps even if the steps were recorded
correctly. It seems that it will be necessary to add a mecha-
nism in the future that allows us to provide custom code in
the back-end to match these radically different widgets.

Another issue is matching forms consisting of a single textbox
and search button, as with the generic search engines and
many other search forms on other web sites. With a small
corpus and very few values as features, it is difficult to rank
the similarities and differences between such forms. We hope
that with a larger data set, the differences between forms
should become more pronounced and judicious use of thresh-
olds (or perhaps automatically changing the thresholds over
time) will solve some of the problem of bad matches. It
seems likely, however, that the generic search engines will
always match to keyword search forms on other web sites,
but this is not necessarily a problem. It could be useful to see
the results of the corresponding Google search every time
you make use of a web sites’ own internal search feature.

Meta-Search Evaluation
We next tested our client-side infrastructure for using the
matches retrieved from the web service by manually defin-
ing the matches and determining if TX2 could combine them
correctly. We first created matches for 10 sites chosen from
6 different categories as listed in Table 2. Overall, TX2 suc-
cessfully crawled and combined the results from 6 of the
10 web sites on which it was tested. These represented the
search engine, library, and shopping sites already popular as
meta-search engines. TX2 can create these automatically,
allowing users to choose the sites that they want included in
personalized meta-search mash-ups without relying on some-
one else to create an appropriate mash-up for them.

TX2 failed to connect sites for two different reasons, both of
which we believe can be overcome in future versions. First,
TX2 was unable to detect the repeating result elements on
the two video sharing sites in the evaluation. This is not sur-
prising as these results are detected using the technique also
used in Sifter as a base, and in an evaluation of that system
it was shown to not always be able to find the correct repeat-
ing result element [10]. The authors believe that by adding
additional structure to the DOM, perhaps by identifying ad-
ditional repeating patterns in the content of results (instead
of only in the DOM structure), this problem could be fixed.

The second problem was that TX2 was unable to automati-
cally submit the forms on both the online shopping sites and
social networking sites in our evaluation. These sites used
non-standard methods to submit form queries. For exam-
ple, to submit a search on ebay.com, users click a link that
calls a Javascript function that does some preprocessing and
then loads a new URL. Because the form cannot be submit-
ted by calling the submit() function of the associated form,
TX2 cannot currently submit this form. In the future, we
plan to leverage CoScripter’s recording features to learn how
to submit forms based on user interactions. In the ebay.com
example, TX2 could have learned that the typical interaction
pattern is to fill out an input field and then click a certain
link, after which a new page loads. The CoScripter “slop”

Site 1 Site 2 Result
google.com live.com Match
google.com yahoo.com Match
live.com yahoo.com Match
spl.org kcls.org Match
youtube.com hulu.com Result Failure
hulu.com youtube.com Result Failure
craigslist.org froogle.com Match
craigslist.org amazon.com Match
facebook.com myspace.com Submit Failure
craigslist.org ebay.com Submit Failure

Table 2: Results of Meta-Search Evaluation. Match
means the connection was successful, Result Failure
means that TX2 was unable to automatically identify
the results section after the page submission, and Sub-
mit Failure means TX2 was unable to automate the
submission of the form.

currently being recorded can capture and play back such in-
teractions; they simply need to be integrated as part of TX2’s
crawling process.

DISCUSSION
TX2 works well at creating the meta-search mash-ups for
which it was designed, and suggests a rich area for future
research on using interaction histories to help automatically
create mash-ups. In this section, we have highlighted some of
the limitations of our current implementation, opportunities
for future work, and remaining challenges for creating mash-
ups automatically from user interactions.

Limitations and Opportunities for Future Work
TX2 demonstrates a new model of mash-up creation in which
recorded web interactions are mined to automatically link
deep web resources. TX2 currently only creates meta-search
mash-ups, but future work may explore how other types of
mash-ups could be created automatically. We believe that to
truly move the creation of mash-ups from the domain of pro-
grammers to everyday users requires more automation. TX2
succeeds for an important class of mash-ups; extending au-
tomatic creation to other types of mash-ups is future work.

As with other mash-up systems, TX2 may draw complaints
from site owners who object to its repackaging of their con-
tent. This is particularly true when TX2 has matched the
visual styling to make results from different sites appear to
have originated from another site. Meta-search has previ-
ously been done at smaller scales in terms of the number of
sites, but TX2 has the potential to expand this to every site in
the deep web. The authors can imagine several scenarios for
addressing these concerns, for example by explicitly noting
the source web site next to each result or by allowing sites to
opt out of TX2. Unlike traditional crawlers, TX2 is a client-
side tool and so exclusion may be harder to enforce. More
generally, TX2 provides a service that we believe users will
find useful and which existing rules do not adequately cover.

Security and Privacy
To protect privacy, forms on secure sites and forms that in-
clude password fields do not need to be recorded. This would
help keep the most sensitive information submitted to web

211

forms private. Even the anonymized version of search queries
can cause privacy concerns. AOL released the query logs of
500,000 users in 2006 that revealed information about these
users that they likely would have preferred to have remained
private (for instance, based on their queries, certain users
could be identified as likely to have a certain health condi-
tion). TX2 does not need to record the specific text input into
web forms, but only needs to recognize when inputs are the
same. TX2 could store anonymized versions of the inputs
hashed with a secure, one-way hash like MD5. This would
add a substantial layer of protection because any adversaries
would first need to guess the input that the user provided and
then verify that it exists in the repository.

Another option is to enable users to submit only the actions
that they performed when executing a query, and to only re-
quire this information when the user wishes to find match-
ing forms through the repository. Users would then be mak-
ing an explicit choice about when to share and when to ac-
cept matches, and potentially limit the consequences of this
choice by only contributing a small part of their interaction
history. As a side effect, the database would need to perform
less filtering of the data that is added to it because more of
the data would pertain to form interaction.

Regardless of the protections offered, some users may choose
not to contribute their interaction histories or query actions
to the repository. These users could still use the connections
that have been demonstrated by others. Those who don’t trust
the connections demonstrated by others may still choose to
use only the connections that they have personally defined.
Contributing connections seems to pose less risk. Exposing
that a user has searched for the same information on two re-
sources reveals much less information than revealing what
they searched for on those resources.

CONCLUSION
We have shown that mash-ups can be created automatically
by mining web interactions, and have presented a new algo-
rithm that uses recorded interactions to connect web forms.
We have also presented an implementation of this system
that makes these mash-ups easy for users to use and create
by augmenting the sites they already visit with results from
other related sites. TX2 lets users aggregate data from multi-
ple sources absent any explicit requirements of the web sites.

Acknowledgements
We thank Bin He for his guidance and useful suggestions.

REFERENCES
1. Adar, E., Teevan, J., and Dumais, S. Large scale analysis of

web revisitation patterns. In Proc. of the SIGCHI Conf. on Hu-
man factors in Comp. Sys. (CHI ’09). Boston, Massachusetts,
USA, 2009.

2. Bigham, J., Cavender, A. C., Kaminsky, R. S., Prince, C. M.,
and Robison, T. S. Transcendence: Enabling a personal view
of the deep web. In Proc. of the 13th Intl. Conf. on Intelligent
User Interfaces (IUI ’08). Gran Canaria, Spain, 2008.

3. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R. C.
Automation and customization of rendered web pages. In
Proc. of the 18th ACM Symp. on User Interface Soft. and Tech.
(UIST ’05). Seattle, WA, USA, 2005, 163–172.

4. Chang, K. C.-C. and He, B. Toward large scale integration:

Building a metaquerier over databases on the web. In Proc. of
the 2nd Conf. on Innovative Data Sys. Research. 2005.

5. Doan, A., Domingos, P., and Halevy, A. Y. Reconciling
schemas of disparate data sources: a machine-learning ap-
proach. In Proc. of the 2001 ACM SIGMOD Intl. Conf. on
Management of data (SIGMOD ’01). 2001, 509–520.

6. Dontcheva, M., Drucker, S. M., Wade, G., Salesin, D., and
Cohen, M. F. Summarizing personal web browsing sessions.
In Proc. of the 19th ACM Symp. on User Interface Soft. and
Tech. (UIST ’06). New York, NY, USA, 2006, 115–124.

7. Faaborg, A. and Lieberman, H. A goal-oriented web browser.
In Proc. of the SIGCHI Conf. on Human Factors in Comp. Sys.
(CHI ’06). Montreal, Quebec, Canada, 2006, 751–760.

8. Fujima, J., Lunzer, A., Hornbk, K., and Tanaka, Y. Clip, con-
nect, clone: combining application elements to build custom
Interfaces for information access. In Proc. of the 17th ACM
Symp. on User Interface Soft. and Tech. (UIST ’04). ACM
Press, New York, NY, USA, 2004, 175–184.

9. Hartmann, B., Wu, L., Collins, K., and Klemmer, S. Program-
ming by a sample: Rapidly prototyping web applications with
d.mix. In Proc. of the 20th Symp. on User Interface Soft. and
Tech. (UIST ’07). Newport, RI, USA, 2007.

10. Huynh, D. F., Miller, R. C., and Karger, D. Enabling web
browsers to augment web sites’ filtering and sorting function-
alities. In Proc. of the 19th ACM Symp. on User Interface
Soft. and Tech. (UIST ’06). ACM Press, New York, NY, USA,
2006, 125–134.

11. Jung, H., Allen, J., Chambers, N., Galescu, L., Swift, M., and
Taysom, W. One-shot procedure learning from instruction and
observation. In Proc. of the Intl. FLAIRS Conf.: Special Track
on Natural Language and Knowledge Representation.

12. Lin, J., Wong, J., Nichols, J., Cypher, A., and Lau, T. A. End-
user programming of mashups with vegemite. In Proc.c of
the 13th Intl. Conf. on Intelligent user Interfaces (IUI ’09).
Sanibel Island, Florida, USA, 2009, 97–106.

13. Little, G., Lau, T., Cypher, A., Lin, J., Haber, E. M., and Kan-
dogan, E. Koala: capture, share, automate, personalize busi-
ness processes on the web. In Proc. of the SIGCHI Conf. on
Human factors in Comp. Sys. (CHI 2007). 2007, 943–946.

14. Madhavan, J., Halevy, A., Cohen, S., Dong, X., Jeffrey, S. R.,
Ko, D., and Yu, C. Structured data meets the web: A few ob-
servations. IEEE Computer Society: Bulletin of the Technical
Committee on Data Engineering, 31, 4 (2006), 10–18.

15. Miller, R. C. and Myers, B. Creating dynamic world wide web
pages by demonstration (1997).

16. Mukherjee, S., Yang, G., Tan, W., and Ramakrishnan, I. Auto-
matic discovery of semantic structures in html documents. In
Proc. of the Intl. Conf. on Document Analysis and Recognition
(ICDAR ’03). 2003.

17. Piggy bank. http://simile.mit.edu/piggy-bank/. Accessed
April 2009.

18. Pilgrim, M., ed. Greasemonkey Hacks: Tips & Tools for
Remixing the Web with Firefox. O’Reilly Media, 2005.

19. Raghavan, S. and Garcia-Molina, H. Crawling the hidden
web. In Proc. of the Twenty-seventh Intl. Conf. on Very Large
Databases (VLDB ’01). 2001.

20. Selberg, E. and Etzioni, O. Multi-service search and compari-
son using the metacrawler. In Proc. of the 4th Intl. World Wide
Web Conf.. Darmstadt, Germany, 1995.

21. Solvent. http://simile.mit.edu/solvent. Accessed April 2009.
22. Toomim, M., Drucker, S. M., Dontcheva, M., Rahimi, A.,

Thomson, B., and Landay, J. A. Attaching UI enhancements
to websites with end users. In Proc. of the ACM Conf. on Hu-
man Factors in Comp. Sys. (CHI 2009). Boston, MA, USA,
2009.

23. Wong, J. and Hong, J. I. Making mashups with marmite: to-
wards end-user programming for the web. In Proc. of the
SIGCHI Conf. on Human factors in Comp. Sys. (CHI ’07).
San Jose, CA, USA, 2007, 1435–1444.

24. Yahoo! pipes. Yahoo! Inc.. http://pipes.yahoo.com/. Ac-
cessed February 2009.

212

