
Swire: Sketch-based User Interface Retrieval
Forrest Huang∗

University of California, Berkeley
John F. Canny

University of California, Berkeley
Jefrey Nichols
Google LLC

Berkeley, California, U.S.A. Berkeley, California, U.S.A. Mountain View, California, U.S.A.
forrest_huang@berkeley.edu canny@berkeley.edu jwnichols@google.com

Deep Neural Network
Embedding

Sketch Query by User Nearest Neighbour Search Ranked Results (Most relevant on the left)
1 2 3 4

Figure 1: Overview of Swire. Swire encodes 1) a sketch query drawn by the user into 2) the sketch-screenshot embedding space
using its deep neural-network. Swire then performs a 3) nearest neighbor search in the embedding space and retrieves 4) design
examples that have similar neural-network outputs as the user’s sketch query.

ABSTRACT
Sketches and real-world user interface examples are fre-
quently used in multiple stages of the user interface design
process. Unfortunately, fnding relevant user interface exam-
ples, especially in large-scale datasets, is a highly challenging
task because user interfaces have aesthetic and functional
properties that are only indirectly refected by their corre-
sponding pixel data and meta-data. This paper introduces
Swire, a sketch-based neural-network-driven technique for
retrieving user interfaces. We collect the frst large-scale user
interface sketch dataset from the development of Swire that
researchers can use to develop new sketch-based data-driven
design interfaces and applications. Swire achieves high per-
formance for querying user interfaces: for a known valida-
tion task it retrieves the most relevant example as within the
top-10 results for over 60% of queries. With this technique,

∗Work done as an intern and student researcher at Google LLC.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for proft or commercial advantage and that copies
bear this notice and the full citation on the frst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

for the frst time designers can accurately retrieve relevant
user interface examples with free-form sketches natural to
their design workfows. We demonstrate several novel appli-
cations driven by Swire that could greatly augment the user
interface design process.

CCS CONCEPTS
• Human-centered computing → Human computer in-
teraction (HCI); • Computing methodologies → Com-
puter vision tasks; • Information systems → Information
retrieval.

KEYWORDS
data-driven design; user interface design; sketching; design
examples; information retrieval; computer vision; deep learn-
ing

ACM Reference Format:
Forrest Huang, John F. Canny, and Jefrey Nichols. 2019. Swire:
Sketch-based User Interface Retrieval. In CHI Conference on Human
Factors in Computing Systems Proceedings (CHI 2019), May 4–9, 2019,
Glasgow, Scotland UK. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3290605.3300334

1 INTRODUCTION
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

Design examples are commonly used in multiple stages of © 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5970-2/19/05. the design process. Designers search, consult and curate de-
https://doi.org/10.1145/3290605.3300334 sign examples to gain inspiration, explore viable alternatives

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 104 Page 1

https://doi.org/10.1145/3290605.3300334
https://doi.org/10.1145/3290605.3300334
https://doi.org/10.1145/3290605.3300334

and form the basis for comparative evaluations [2, 9]. The
recent introduction of data-driven design and the emergence
of large-scale user interface (UI) datasets provide designers
with large corpuses of real examples that refect multiple
facets of successful designs [11]. These examples embody
rich information such as popular visual illustrations, com-
mon fow patterns and high-fdelity layout implementations
[6] that can greatly augment various design tasks [12, 18, 25].
Retrieving relevant design examples from large-scale UI

datasets, however, can be a daunting task. While designers
can easily search for general categories of examples (e.g., UIs
from all Dating Apps), conducting fned-grained searches
based on visual layouts and content is much more difcult.
Researchers have developed image-based UI retrieval system
[27], but this technique alone is often unsuitable for retriev-
ing UIs because of their inherent semantic complexity. A
successful UI retrieval technique needs to 1) allow users to
easily express their query criteria in a way that can cover
both visual layout and content; and 2) match these criteria
with design information obfuscated by raw pixels and code
in the design examples.
Sketching is an efective visual medium for conveying

design ideas. Designers use sketches to expand novel ideas,
visualize abstract concepts, and rapidly compare alternatives
[3]. Moreover, sketches are commonplace in design processes
and typically require minimal efort for designers to produce.
This suggests that sketches might be a good method by which
designers could specify query criteria when searching UI
corpuses, which motivates our investigation of sketch-based
UI retrieval techniques in this paper.
Using sketches as the querying modality also lends it-

self to the recent success of machine learning techniques
in recognizing visual patterns. Since both sketches and UI
screenshots contain complex visual features, we can develop
deep-neural-network-based models to efectively learn cor-
respondences between sketches and UI screenshots for re-
trieval.
Driven by the utility of using sketching as a medium for

UI retrieval and the efectiveness of machine learning vi-
sion models, this paper introduces Swire, a sketch-based UI
retrieval technique powered by neural networks. This pa-
per ofers two major contributions. First, we collected the
frst large-scale sketch dataset consisting of 3802 sketches
corresponding to 2201 UI examples from the Rico dataset
[5] drawn by experienced UI designers recruited on an on-
line freelance work platform. This dataset allows us to de-
velop techniques capable of learning UI sketch patterns and
supports future work in this area. Second, this paper intro-
duces a versatile neural-network-based UI retrieval tech-
nique adopted from a common machine learning method
used for sketch-based image retrieval. This technique en-
ables sketches to be used by designers as a novel interaction

modality to interact with large-scale UI datasets. We present
a quantitative evaluation of the accuracy of the model and
derive qualitative insights from sample queries, expert evalu-
ation, and embedding values that refect the concepts learned
by the network. Furthermore, we demonstrate Swire’s ca-
pability to support multiple novel sketch-based data-driven
design applications that tightly integrate into the design pro-
cess. With Swire, we hope to enable design applications that
help designers efortlessly gain inspirations, evaluate designs
and communicate novel ideas.

2 RELATED WORK
Mobile User Interface Repositories
Design examples are commonly curated and collected by
designers to explore the design space and inspire new design
ideas. The value brought by these examples has led to the
creation of several large-scale mobile UI repositories, such as
UXArchive [1], ERICA [6] and Rico [5]. Swire is developed
by collecting a dataset of sketches from designers based on
designs found in Rico.
The Rico dataset consists of 72,219 unique UI examples

from 9,722 Android apps. Each example consists of a screen-
shot and the corresponding view hierarchy data. Since Rico
is crowdsourced from real crowdworkers’ interactions with
the app, Rico also captures the user interaction information
(e.g., clicks that lead to the current interface) during the data
collection process.

The Rico dataset has been shown to be useful in a number
of machine-learning driven applications. The most notable
application is a deep auto-encoder model that retrieves simi-
lar UIs based on the position of text and non-text elements [5].
While this model demonstrates Rico’s applicability on deep
learning techniques, Swire explores retrieval with sketch-
ing, a modality that encapsulates richer requirements for a
machine-learned model.

Sketch-based User Interface Authoring and
Manipulation
Sketch-based interactions are commonly used in the early
stages of the design process [17]. Thus, HCI researchers have
explored sketch-based design applications to support these
stages. SILK [13] is the frst system that allows designers to
author interactive, low-fdelity UI prototypes by sketching.
DENIM [14] allows web designers to prototype with sketches
at multiple detail levels.
Inspired by the efectiveness of sketching for authoring

and manipulating UI designs, Swire uses sketching as a in-
teraction modality that allows designers to naturally query
for relevant examples from large-scale UI datasets.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 104 Page 2

Sketch-based Image Retrieval and Sketch Datasets
Sketch-based Image Retrieval is a frequently studied problem
in the Computer Vision community. The standard sketch-
based image retrieval task involves users creating a simplistic
sketch with binary strokes depicting minimal user-defned
features of the target natural image. For instance, when a
user desires to retrieve an image of a bird in a certain pose,
the user would only sketch the outline of the target body of
the bird and lines that delineates the bird’s wing.
Since users often focus on the target objects within the

images when attempting to retrieve these images, typical
approaches in prior work are to frst obtain an edge-map
of the original image that delineates the boundary between
the (foreground) object and the background scene using an
edge-detection technique, such as the Canny Edge Detec-
tor [4]. These approaches then match the edge-map with
the user-created sketch using image similarity techniques.
Researchers have developed a variety of image similarity met-
rics to improve retrieval performance, from the basic Peak
Signal-to-Noise Ratio (PSNR) [26] to the more advanced Bag-
of-words (BoW) Histogram of Oriented Gradients (HOG)
flters [10].

With the recent increasing popularity of neural networks
and crowdsourcing, researchers have developed large-scale
sketch datasets that correspond to natural image datasets to
power neural-network-driven techniques for image-retrieval
tasks. The TU-Berlin [8] and Sketchy [22] sketch datasets
consist of crowdsourced sketches that are collected from
crowdworkers by presenting them the original correspond-
ing natural images. Using these corresponding sketch-image
pairs, neural networks are trained to directly encode match-
ing sketches and images to similar low-dimensional outputs.
When retrieving images with a sketch query, the natural
images are ranked by the distance (e.g., Euclidean Distance)
between their neural-network outputs and the sketch query’s
outputs.
Swire is greatly infuenced by neural-network-based im-

age retrieval methods described above. In addition, we ex-
plore the use of BoW-HOG flters as a baseline method to
demonstrate and contrast the high efectiveness of neural-
network-based Swire for retrieving UIs using sketches.

3 USER INTERFACE SKETCH DATASET
Our approach to recognizing and deriving patterns from
sketches requires a dataset of actual sketches stylistically
and semantically similar to designers’ sketches of UIs. To our
knowledge, no large-scale public datasets of UI sketches are
currently available, especially coupled with corresponding
screenshots of real-world UIs. Hence, we collected sketches
created by designers based on screenshots of original UIs
in the Rico dataset. We hope to support the development of

future sketch-based data-driven design applications by re-
leasing the dataset. The dataset is available at https://github.
com/huang4fstudio/swire.

Designer Recruitment and Compensation
We recruited 4 designers through the freelancing platform
Upwork. All designers reported having at least occasional
UI/UX design experience and substantial sketching experi-
ence. In addition, all designers reported receiving formal
training in UI design and degrees in design-related felds.
They were compensated 20 USD per hour and worked for
60-73 hours.

Dataset Statistics
We collected 3802 sketches of 2201 UI examples from 167 pop-
ular apps in the Rico dataset. Each sketch was created with
pen and paper in 4.1 minutes on average. Many UI examples
were sketched by multiple designers. 71.0% of the examples
were sketched by 2 designers, 28.1% of the examples were
sketched by 1 designer and the remaining examples (< 1%)
were sketched by 3 designers in our dataset. Our 4 designers
sketched 505/1017/1272/1008 UIs respectively based on their
availability. We allocated batches of examples to diferent
combinations of designers to ensure the generality of the
dataset.
We did not have the resources to generate sketches for

every UI in the Rico dataset, so we curated a diverse subset
of well-designed UI examples that cover 23 app categories
in the Google Play Store and were of average to high design
quality. We omitted poorly designed UIs from the dataset
because of the relative small size of the dataset for neural
network training. Noise introduced into training by poor
designs had the potential to negatively impact the training
time and quality of our model.

Data Collection and Postprocessing Procedure
We supplied the screenshots of our curated examples to the
recruited designers and asked them to create sketches cor-
responding to the screenshots with pen and paper. They
were prompted to reconstruct a low-fdelity sketch from the
screenshot as if they were the designers of the interfaces. We
instructed them to replace all actual image content in the
screenshot with a sketched placeholder (a square with a cross
or a mountain) and replace dynamic text in the screenshot
with template texts as shown in Figure 2. We added these
instructions to obtain sketches with a more unifed repre-
sentation focused on the design layout of various UIs. These
instructions also make it easier for the neural network to
learn the concepts of images and text within the constraints
of our small dataset.
In order to efciently collect and calibrate sketches cre-

ated by multiple designers in various formats of photos and

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 104 Page 3

https://github.com/huang4fstudio/swire
https://github.com/huang4fstudio/swire

UI Screenshot Supplied
to Designer

Designer Sketch on Template
and Sends Photo/Scan Back

Post-process with Computer
Vision Techniques

ArUco Marker for calibration

Template Text

Template Image

Figure 2: Data Collection Procedure. We frst send a UI
screenshot (Left) and paper templates with ArUco markers
to designers. Designers then sketch on the template and
sends back a photo or a scan of the completed sketch (Mid-
dle). We then post-process the photo using Computer Vision
techniques to obtain the fnal clean sketch dataset (Right).

scans, we supplied them with paper templates with frames
for them to sketch on as shown in Figure 2. These frames are
annotated with four ArUco codes [16] at the corners to allow
perspective correction. All photos and scans of the sketches
are corrected with afne transformation and thresholded to
obtain binary sketches as fnal examples in the dataset.

4 DEEP NEURAL-NETWORK-BASED USER
INTERFACE RETRIEVAL

The main component of Swire is a deep convolutional neural
network. The development of Swire consists of a training
phase and a querying phase. During the training phase, we
train Swire’s deep neural network to generate similar low-
dimensional outputs (64-dimensions) for matching pairs of
screenshots and sketches, and dissimilar outputs for non-
matching pairs of screenshots and sketches. This training
scheme is shown to be useful for sketch-based image retrieval
[22]. In the querying phase, we use Swire’s trained neural
network to encode a user’s sketch query and retrieve UIs
with the closest output to the user’s sketch’s output.

Many other best alternative solutions to sketch-based im-
age retrieval mentioned in Section 2 use fxed image features
of the original image extracted with edge detection methods.
These methods may work for certain types of UI designs that
exhibit strong edges, such as a grid-based photo viewer, but
this approach can be inadequate when the sketches of the
UIs do not directly correspond to the edges. For example,
list-based UIs without clear dividers will have edge-maps
which correspond less to their sketches compared to their
grid-based counterparts with clear dividers.
Swire’s adoption of cross-modal embedding training has

the advantage that it creates a unifed embedding space for
both sketches and UIs with learned concepts based on their
correspondences. This means Swire can be used to search a

dataset of UIs using either sketches or actual screenshots as
the querying modality.

Network Architecture
Since the system is required to match correspondence be-
tween images, we used two convolutional sub-networks to
handle the two inputs of sketch-screenshot pairs.

These two sub-networks are similar to VGG-A [24], a shal-
low variant of the state-of-the-art network that won the
ILSVRC2014 image recognition challenge [21]. Our network
consists of 11 layers, with fve convolutional blocks and three
fully-connected layers. Each convolutional block contains
two (one for the frst two blocks) convolutional layers with
3x3 kernels and one max-pooling layer. The convolutional
layers in the fve blocks have 64, 128, 256, 512, and 512 flters
respectively. The frst two fully-connected layers have 4096
hidden units. The last layer has 64 hidden units and outputs
the 64-dimension embedding used for querying. The activa-
tion functions of all layers except the last layer are ReLU.
The network architecture is described in detail in Figure 3.

The fnal 64-dimensional output embeddings of the sub-
networks are trained to produce adequate embeddings rep-
resented as codes in the last layer. The model is trained with
a pairwise sampling scheme described in the following sub-
section.

Triplet Loss
The model is trained with a Triplet Loss function [23, 28]
that involves the neural-network outputs of three inputs: an
‘anchor’ sketch s , a ‘positive’ matching screenshot i and a

′ ‘negative’ mismatched screenshot i . This forms two pairs
of input during training. The positive pair p(s, i)+ consists
of a sketch-screenshot pair that correspond to each other.
The negative pair p(s, i ′)− consists of a sketch-screenshot
pair that does not correspond. The negative pair is obtained
with the same sketch from the positive pair and a random
screenshot sampled from the mini-batch.

During training, each pair p(s, i) is passed through two sub-
networks such that the sketch sample s is passed through
the sketch sub-network and outputs an embedding fs (s),
and we similarly obtain the neural-network output of the
screenshot fi (i). We compute the l2 distance D between the
neural network outputs. For the positive pair,

D(p(s, i)+) = | | fs (s) − fi (i)| |2
Similarly, for the distance of the negative pair,

D(p(s, i ′)−) = | | fs (s) − fi (i ′)| |2
With these distances, we formulate a triplet loss function,

L = D(p(s, i)+) + max (0,m − D(p(s, i ′)−))

m = margin between positive and negative pairs

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 104 Page 4

3x3 conv x 64

x1

2x2 pooling 3x3 conv x 128

x1

2x2 pooling 3x3 conv x 256

x2

2x2 pooling 3x3 conv x 512

x2

2x2 pooling 3x3 conv x 512

x2

2x2 pooling fc 4096 x2
fc 64 x1

Sketch VGG-A Net

Embedding Space

(Minimize distance)

Screenshot VGG-A Net (Same Network as above, Different Weights)

…...
ScreenshotSketch

Figure 3: Network Architecture of Swire’s Neural Network. Swire’s neural network consists of two identical sub-networks
similar to the VGG-A deep convolutional neural network. These networks have diferent weights and attempts to encode
matching pairs of screenshots and sketches with similar values.

We maintain a margin m between the positive and negative
pairs to prevent the network from learning trivial solutions
(zero embeddings for all samples).

Data and Training Procedure
Since we collected data from four separate designers, we
split the data and used data collected from three designers
for training and from one designer for testing. This is to en-
sure that the model generalizes across sketches produced by
diferent designers. In addition, we do not repeat interfaces
from the same apps between the training and test sets. This
creates 1722 matching sketch-screenshot pairs for training
and 276 pairs for testing.

During training, the sketches and screenshots are resized
to 224 × 224 pixels, and the pixel values are normalized
between (−1, 1) centered at 0. The network is trained using
a Stochastic Gradient Descent Optimizer with a mini-batch
size of 32. The learning rate is 1×10−2. The margin is 0.2 in all
models. All hyper-parameters listed above were determined
by empirical experiments on the training set.

Qerying
When the user makes a query with a drawn sketch, the model
computes an output by passing the sketch through the sketch
sub-network. This output is then compared with all neural-
network outputs of the screenshots of UI examples in the
dataset using a nearest neighbor search. The UI results are
ranked by the distance between their outputs and the user’s
sketch’s output.

5 RESULTS
Baseline
We implement a competitive non-neural baseline to evaluate
the performance of our method. As described in Section 2,
typical methods of sketch-based image retrieval involve two

steps: 1) extract an edge-map from the original image to be
queried, 2) match the edge-map using a specifc similarity
metric. Using this framework, we frst extracted the edges
of the screenshots using the Canny Edge detector [4]. We
then extracted features from the edges using Bag-of-words
(BoW) Histogram of Oriented Gradients (HOG) flters. BoW-
HOG flters is an advanced method of computing similar-
ity between images. It captures edge features in an image
by computing the magnitude of gradients across the entire
image with respect to multiple orientations. This method
summarizes image features with fxed-length vectors that
describe the occurrences and characteristics of edges in im-
ages. This method is highly efective for sketch-based image
retrieval as it focuses on the characteristics of edges while
being insensitive to local translations and rotations.
After obtaining these fxed-length vectors, we compare

them using Euclidean Distance as a simple metric to ob-
tain similarity values between images, and subsequently use
these values to query for closest matching images (design
screenshots in our case) to the sketch queries.

Qantitative Results
We use a test set that consists of 276 UI examples to compare
Top-1 and Top-10 performances of BoW-HOG flters and
Swire. The results are summarized in Table 1. We observe
that Swire signifcantly outperform BoW-HOG flters for Top-
10 performance at 60.9%. For Top-1 accuracy, Swire achieves
an accuracy of 15.9% which only slightly outperformed the
strong baseline of BoW-HOG flters at 15.6%. This shows
Swire to be particularly efective for retrieving complex ex-
amples from the dataset compared to the BoW-HOG flters.
We believe deep-learning-based Swire is advantageous com-
pared to BoW-HOG flters that rely on matching edge-maps
because UI sketches have semantic complexities that are not
captured by edge-maps of screenshots.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 104 Page 5

Technique Top-1 Top-10

(Chance) 0.362% 3.62%
BoW-HOG flters 15.6% 38.8%
Swire 15.9% 60.9%

Table 1: Top-k Accuracy of Various Models on the Test Set.
Swire signifcantly outperforms BoW-HOG flters.

Qalitative Results
We visualize query results from the test set to qualitatively
understand the performance of Swire in Figure 4. Swire is
able to retrieve relevant menu-based interfaces despite the
diference in visual appearance of the menu items (Exam-
ple a). Swire is also able to retrieve pop-up windows imple-
mented in various ways despite the drastic diference in the
dimensions of the pop-up windows (Example b). We observe
similar efcacy in retrieving settings (Example c), list-based
(Example f), and login layouts (Example e). Nevertheless, we
observe that Swire sometimes ignores smaller details of the
interfaces described by sketched elements. This limitation
will be further discussed in Section 7.

Expert Evaluation
To better evaluate Swire’s performance from professional
users’ perspectives, we recruited 5 designers on Upwork with
substantial experience in mobile UI/UX design to evaluate
selected results from the test set. There was no overlap be-
tween these designers and those recruited for creating the
dataset. We provided them with 9 sets of query sketches and
the corresponding Top-10 retrieved results for each query
from the test set. The 9 sets consist of 3 ‘best’ results (the
corresponding screenshot of the sketch query is retrieved
as the Top-1 result), 3 ‘mediocre’ results (the corresponding
screenshot of the sketch query is retrieved within the Top-10
results, but not Top-1), and 3 ‘poor’ results (the correspond-
ing screenshot of the sketch query is not retrieved within
the Top-10 results). We asked the designers to provide com-
ments on each set of results regarding the relevance between
the sketches and the screenshots, and to comment on the
potential integration of this tool into their design workfows.
Most designers agreed that all retrieved results in the

‘best’ result sets are relevant to the query, and they would be
satisfed with the results. They were especially satisfed with
a result set of sliding menus (also shown in Figure 4a). They
were able to identify the results as ‘variations on the theme
of navigation drawers’ (D3) or ‘slide out modal pattern.’ (D2)
Moreover, the designers also expressed satisfaction towards
some sets of ‘mediocre’ results. Most were satisfed with a set
of results that ‘show variations of the top tabbed navigation’
(D5) which is a common design pattern.

Query Results (Ranked 1, 2, 3)

a)

b)

c)

d)

e)

f)

Figure 4: Query Results for Complete Sketches. Swire is able
to retrieve common types of UIs such as sliding menus (a),
settings (c), and login (e) layouts.

On the other hand, some designers considered the ‘poor’
results unsatisfactory. For example, designers were less sat-
isfed with the model’s performance on a sign-up sketch,
commenting that the model only gathered screens with sim-
ilar element layouts while ignoring the true nature of the

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 104 Page 6

Sliding Menus

Facebook
Login

Onboarding

Figure 5: t-SNE Plot of the Embedding Space. Swire is able
embed semantically similar UIs into multiple clusters. For
instance, tutorial screens, onboarding screens and sliding
menu each form their own clusters in the embedding space.

parts of the UI sketched by the user. This model allows de-
signers to quickly gain design inspirations that are relevant
to the key UI elements desired by them.

In the training and querying phases of Swire-segments, UI
examples are split into small parts. Designers can thus specify
one-or-more parts of the UI to be matched by the model with
the examples in the dataset. We compute an embedding for
each part of the interface and match only the embeddings of
the parts specifed by the users for retrieval. Example a in
Figure 6 demonstrates that Swire-segments is able to retrieve
multiple designs that all contain the Floating Action Button
(FAB, a popular Android design paradigm) but with diverse
layouts. Swire-segments is also able to retrieve interfaces
with only tab-based top bars in common (see Example b).
These examples show that Swire-segments is able to remain
agnostic to the unspecifed part of the sketch queries.

Evaluation with Alternative Designs
Designers often explore alternative design examples to sup-
port the implementation and comparative evaluation [9] of
their own designs. HCI research literature also recommends
the use of parallel prototyping techniques to obtain better f-
nal products through extensive comparison [7]. Swire is able
to support design comparisons because it enables querying
for similar UIs with high-fdelity UI prototypes.
Swire is efective in retrieving similar UIs because the

visual content of UI screenshots are reinforced with the se-
mantic structure of sketches in the embedding space during

input felds and buttons in the query (D3). However, D4 con-
sidered ‘rows of design elements’ common in the results
relevant to the sketch, and D1 considered two similar sign-
up screens retrieved by the model as strong results even they
did not match up perfectly with the sketch.

In general, we observed that designers were more satisfed
with the results when the model was able to retrieve results
that are semantically similar at a high-level instead of those
with matching low-level element layouts. Notably, D1 com-
mented that we ‘probably already considered the common
UI sketch patterns and train’ our ‘system to match it up with
image results,’ which refects the efectiveness of Swire in de-
tecting common UI patterns in some instances provided that
it was not specifcally trained to recognize these patterns. All
designers also considered Swire to be potentially useful in
their workfows for researching, ideating and implementing
novel designs.

Embedding Understanding
Since we obtained fxed-length embedding values by encod-
ing all UIs in the dataset with our trained networks, we
project each data point in the training set in this embedding
space to a 2-D fgure using the dimensionality reduction
method t-SNE [15] (see Figure 5). t-SNE is an optimization-
based method that is capable of constructing projections that
faithfully present distances between data points in the origi-
nal dimensionality. We fnd clear clusters of sliding menus,
Facebook login screens and onboarding screens, which sug-
gests that Swire is categorizing UIs at least in part by their
overall structure.

6 APPLICATIONS
In Section 5, we evaluated and validated Swire’s efectiveness
for generally fnding design examples through sketch-based
queries. Since both sketches and UI design examples are
commonly used in early stages of the user interaction design
process as reported by a variety of prior studies [9, 17], we
explore the potential usage of Swire through several design
applications in this section. Prototypes of these applications
implemented with the Jupyter Notebook are available at
https://github.com/huang4fstudio/swire.

Auto-completing Partial Designs
Sketches are often used for rapid exploration of potential de-
sign solutions [3]. Designers use partial sketches to express
core ideas, while leaving out parts of the interface in sketches
for considering viable design alternatives. We trained an al-
ternative model Swire-segments on partial sketches of UIs,
which allows us to ‘auto-complete’ the remaining UI by re-
trieving a variety of examples that are only required to match

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 104 Page 7

https://github.com/huang4fstudio/swire

19837

53739
(Match any
Results)

(Match any
Results)

Query Results (Ranked 1, 2, 3)

a)

b)

Figure 6: Autocomplete Query Results. Swire is able to re-
trieve interfaces only based on parts specifed by users’
sketches while remaining agnostic to other parts of the UIs.

training. Swire can thus be used as a semantically-aware
similarity metric between interfaces.

Figure 7 shows that Swire retrieves similar menus (Exam-
ple a), login screens (Example b), list-based UIs (Example c),
and grid-based UIs (Example d) when querying with high-
fdelity screenshots. Most notably, Swire is able to retrieve
multiple types of list-based UIs despite diferences among the
individual items within the lists in Example c. This enables
efective comparison between similar designs with slight
variations.

User Flow Examples
Beyond querying for single UIs, designers also use sketches
to illustrate user experience at multiple scales [17], such as
conveying transitions and animations between multiple in-
terfaces. Since the Rico dataset also includes user interaction
data, we use this data to enable fow querying with Swire. De-
signers can use this application to interact with interaction
design examples that can accelerate the design of efective
user fows.

To query fow examples in the dataset, since Swire creates
a single embedding for each UI, we can match an arbitrary
number of interfaces in arbitrary order by concatenating the
embedding values during the ranking process of querying.
Figure 8 shows the results of querying for two sketches that
occur consequently in a user interaction. Swire is able to
retrieve registration (Example a) and ‘closing menu’ (Exam-
ple b) fows that are commonly implemented by designers.

Query Results (Ranked 1, 2, 3)

a)

b)

c)

d)

Figure 7: Alternative Design Query Results. Swire is able to
retrieve similar UIs in the dataset from queries of complete,
high-fdelity UI screenshots.

Since Rico also contain transition details between each con-
sequent UIs, these examples can demonstrate popular ani-
mation patterns [6] that provide inspiration to interaction
and animation designers.

7 DISCUSSION
Limitations
Despite Swire’s success in retrieving relevant UI examples,
we observed its inability to obtain a fne-grained semantic
understanding of certain sketches. Figure 9 shows several
modes of the failure cases we observed during the evaluation
of Swire.
The frst mode occurs when Swire handles rare, custom

UI elements as exhibited by Example a. Swire failed to under-
stand the sophisticated weather chart and retrieved another
interface with similar layouts as the most relevant result
with the query.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 104 Page 8

Query

Results (Ranked 1, 2)Query

a)

b)

Figure 8: Flow Query Results. Swire is able to query UIs with
multiple sketches concurrently to retrieve user fows.

Query Results (Ranked 1, 2, 3)

a)

b)

Figure 9: Failure Modes of UI Retrieval using Swire. Swire
failed to understand a) custom and b) colorful UI elements.

The second mode is Swire’s failure in understanding UIs
with diverse colors, such as those with image backgrounds. In
Example b, Swire confused a login screen with a background
image, although the most relevant UI was still ranked in the
second place.

Future Work
There are a number of improvements to the current Swire
model that could be made in future work.

As Swire focuses primarily on the high-level layout infor-
mation of the sketches, we believe that it could be improved
through incorporating an understanding and control of in-
dividual elements in the sketches. One viable solution is to
train an element-level sketch recognition model to recognize
specifc types of elements sketched by the users in certain re-
gions, such as using a Region Proposal Network introduced
in Faster-RCNN [19].

The model currently does not explicitly consider stylistic
features and context information in its embedding space.
In future work, contextual information can potentially be
included in the model by processing content in the interfaces
using topic modeling. Stylistic understanding of interfaces
can be approached using feature engineering by considering
visual features in the interface using style heuristics [20] and
users’ feedback.

The neural network in Swire currently only takes screen-
shots and sketches as inputs. While visual content provides
some structural and semantic information about the UIs, we
believe Swire can be improved by also including structured
UI Hierarchy trees consisting of each element’s properties as
an additional input to the network. The inclusion of UI Hier-
archies would add rich structural and semantic information
that could potentially improve Swire’s understanding of UIs.
A natural extension to this query model work would be

to explore generative models that produce high-fdelity UI
mock-ups from sketch-based inputs. While multiple auto-
mated methods have been developed in the past, they have
failed to gain traction due to their unpredictability and the
low ceiling of their generated interfaces. Recent advances
in deep-learning methods for program synthesis contribute
new promising results in this area, and could suggest path
forward to sketch-based UI generation. We believe that the
dataset contributed by this paper can support the develop-
ment of such approaches to UI generation.
Finally, while this paper demonstrates Swire’s capability

and potential in supporting design applications, these ap-
plications are currently rough prototypes that are not yet
suitable for everyday use by designers. We plan to further
develop these applications and explore how they integrate
into the design and software engineering processes. Stud-
ies of their usage will inform design and implementation
choices, such as the visual representation of UI examples in
the application and the underlying datasets to be queried.

8 CONCLUSION
This paper presents Swire, a sketch-based UI retrieval tech-
nique that enables designers to interact with large-scale UI
datasets using sketches. During the development of Swire,
we collected a dataset of sketches corresponding to UIs that
is able to support researchers in developing further sketch-
based data-driven applications. Trained on this dataset,
Swire’s fexible deep-learning model achieves high perfor-
mance in retrieving UIs and supports multiple practical de-
sign applications. Through the development of Swire, we
hope to provide designers with relevant materials and com-
putational resources to focus on creative and innovative tasks
in the design process.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 104 Page 9

ACKNOWLEDGMENTS
The authors would like to thank all reviewers for their in-
sightful and constructive comments. The authors would
also like to thank all designers on Upwork that created the
sketches in the dataset and reviewed the results.

REFERENCES
[1] Arthur Bodolec, Nathan Barraille, and Chris Polk. [n. d.]. The iPhone

app archive. http://uxarchive.com/
[2] Nathalie Bonnardel. 1999. Creativity in Design Activities: The Role of

Analogies in a Constrained Cognitive Environment. In Proceedings of
the 3rd Conference on Creativity & Cognition (C&C ’99). ACM,
New York, NY, USA, 158–165. https://doi.org/10.1145/317561.317589

[3] Bill Buxton. 2007. Sketching User Experiences: Getting the Design Right
and the Right Design. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

[4] John Canny. 1986. A computational approach to edge detection. IEEE
Transactions on pattern analysis and machine intelligence 6 (1986), 679–
698.

[5] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel
Afergan, Yang Li, Jefrey Nichols, and Ranjitha Kumar. 2017. Rico: A
Mobile App Dataset for Building Data-Driven Design Applications.
In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology (UIST ’17). ACM, New York, NY, USA, 845–854.
https://doi.org/10.1145/3126594.3126651

[6] Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016. ERICA: Interac-
tion Mining Mobile Apps. In Proceedings of the 29th Annual Symposium
on User Interface Software and Technology (UIST ’16). ACM, New York,
NY, USA, 767–776. https://doi.org/10.1145/2984511.2984581

[7] Steven P. Dow, Alana Glassco, Jonathan Kass, Melissa Schwarz,
Daniel L. Schwartz, and Scott R. Klemmer. 2010. Parallel Prototyp-
ing Leads to Better Design Results, More Divergence, and Increased
Self-efcacy. ACM Trans. Comput.-Hum. Interact. 17, 4, Article 18 (Dec.
2010), 24 pages. https://doi.org/10.1145/1879831.1879836

[8] Mathias Eitz, James Hays, and Marc Alexa. 2012. How Do Humans
Sketch Objects? ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4 (2012),
44:1–44:10.

[9] Scarlett R. Herring, Chia-Chen Chang, Jesse Krantzler, and Brian P.
Bailey. 2009. Getting Inspired!: Understanding How and Why Examples
Are Used in Creative Design Practice. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’09). ACM,
New York, NY, USA, 87–96. https://doi.org/10.1145/1518701.1518717

[10] Rui Hu and John Collomosse. 2013. A Performance Evaluation of
Gradient Field HOG Descriptor for Sketch Based Image Retrieval.
Comput. Vis. Image Underst. 117, 7 (July 2013), 790–806. https://doi.
org/10.1016/j.cviu.2013.02.005

[11] Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres, Maxine Lim,
Salman Ahmad, Scott R. Klemmer, and Jerry O. Talton. 2013. Webzeit-
geist: Design Mining the Web. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’13). ACM, New York,
NY, USA, 3083–3092. https://doi.org/10.1145/2470654.2466420

[12] Ranjitha Kumar, Jerry O. Talton, Salman Ahmad, and Scott R. Klem-
mer. 2011. Bricolage: Example-based Retargeting for Web Design.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI ’11). ACM, New York, NY, USA, 2197–2206.
https://doi.org/10.1145/1978942.1979262

[13] James A. Landay. 1996. SILK: Sketching Interfaces Like Krazy. In
Conference Companion on Human Factors in Computing Systems (CHI
’96). ACM, New York, NY, USA, 398–399. https://doi.org/10.1145/
257089.257396

[14] James Lin, Mark W. Newman, Jason I. Hong, and James A. Landay.
2000. DENIM: Finding a Tighter Fit Between Tools and Practice for
Web Site Design. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’00). ACM, New York, NY, USA,
510–517. https://doi.org/10.1145/332040.332486

[15] Laurens van der Maaten and Geofrey Hinton. 2008. Visualizing data
using t-SNE. Journal of machine learning research 9, Nov (2008), 2579–
2605.

[16] Rafael Munoz-Salinas. 2012. ARUCO: a minimal library for Augmented
Reality applications based on OpenCv. Universidad de Córdoba (2012).

[17] Mark W. Newman and James A. Landay. 2000. Sitemaps, Storyboards,
and Specifcations: A Sketch of Web Site Design Practice. In Proceed-
ings of the 3rd Conference on Designing Interactive Systems: Processes,
Practices, Methods, and Techniques (DIS ’00). ACM, New York, NY, USA,
263–274. https://doi.org/10.1145/347642.347758

[18] T. A. Nguyen and C. Csallner. 2015. Reverse Engineering Mobile
Application User Interfaces with REMAUI (T). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
248–259. https://doi.org/10.1109/ASE.2015.32

[19] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-
cnn: Towards real-time object detection with region proposal networks.
In Advances in neural information processing systems. 91–99.

[20] Daniel Ritchie, Ankita Arvind Kejriwal, and Scott R. Klemmer. 2011.
D.Tour: Style-based Exploration of Design Example Galleries. In Pro-
ceedings of the 24th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST ’11). ACM, New York, NY, USA, 165–174.
https://doi.org/10.1145/2047196.2047216

[21] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael S. Bernstein, Alexander C. Berg, and Fei-Fei Li. 2014. ImageNet
Large Scale Visual Recognition Challenge. CoRR abs/1409.0575 (2014).
arXiv:1409.0575 http://arxiv.org/abs/1409.0575

[22] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. 2016.
The Sketchy Database: Learning to Retrieve Badly Drawn Bunnies.
ACM Trans. Graph. 35, 4, Article 119 (July 2016), 12 pages. https:
//doi.org/10.1145/2897824.2925954

[23] Florian Schrof, Dmitry Kalenichenko, and James Philbin. 2015.
Facenet: A unifed embedding for face recognition and clustering.
In Proceedings of the IEEE conference on computer vision and pattern
recognition. 815–823.

[24] K. Simonyan and A. Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In International Conference
on Learning Representations.

[25] Amanda Swearngin, Mira Dontcheva, Wilmot Li, Joel Brandt, Morgan
Dixon, and Andrew J. Ko. 2018. Rewire: Interface Design Assistance
from Examples. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New York, NY, USA,
Article 504, 12 pages. https://doi.org/10.1145/3173574.3174078

[26] S. Winkler and P. Mohandas. 2008. The Evolution of Video Quality
Measurement: From PSNR to Hybrid Metrics. IEEE Transactions on
Broadcasting 54, 3 (Sept 2008), 660–668. https://doi.org/10.1109/TBC.
2008.2000733

[27] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. 2009. Sikuli:
Using GUI Screenshots for Search and Automation. In Proceedings
of the 22Nd Annual ACM Symposium on User Interface Software and
Technology (UIST ’09). ACM, New York, NY, USA, 183–192. https:
//doi.org/10.1145/1622176.1622213

[28] Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy Hospedales, and
Chen Change Loy. 2016. Sketch Me That Shoe. In Computer Vision and
Pattern Recognition.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 104 Page 10

http://uxarchive.com/
https://doi.org/10.1145/317561.317589
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/2984511.2984581
https://doi.org/10.1145/1879831.1879836
https://doi.org/10.1145/1518701.1518717
https://doi.org/10.1016/j.cviu.2013.02.005
https://doi.org/10.1016/j.cviu.2013.02.005
https://doi.org/10.1145/2470654.2466420
https://doi.org/10.1145/1978942.1979262
https://doi.org/10.1145/257089.257396
https://doi.org/10.1145/257089.257396
https://doi.org/10.1145/332040.332486
https://doi.org/10.1145/347642.347758
https://doi.org/10.1109/ASE.2015.32
https://doi.org/10.1145/2047196.2047216
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://doi.org/10.1145/2897824.2925954
https://doi.org/10.1145/2897824.2925954
https://doi.org/10.1145/3173574.3174078
https://doi.org/10.1109/TBC.2008.2000733
https://doi.org/10.1109/TBC.2008.2000733
https://doi.org/10.1145/1622176.1622213
https://doi.org/10.1145/1622176.1622213

	Abstract
	1 Introduction
	2 Related Work
	Mobile User Interface Repositories
	Sketch-based User Interface Authoring and Manipulation
	Sketch-based Image Retrieval and Sketch Datasets

	3 User Interface Sketch Dataset
	Designer Recruitment and Compensation
	Dataset Statistics
	Data Collection and Postprocessing Procedure

	4 Deep Neural-network-based User Interface Retrieval
	Network Architecture
	Triplet Loss
	Data and Training Procedure
	Querying

	5 Results
	Baseline
	Quantitative Results
	Qualitative Results
	Expert Evaluation
	Embedding Understanding

	6 Applications
	Auto-completing Partial Designs
	Evaluation with Alternative Designs
	User Flow Examples

	7 Discussion
	Limitations
	Future Work

	8 Conclusion
	Acknowledgments
	References

