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Figure 1: Overview of Swire. Swire encodes 1) a sketch query drawn by the user into 2) the sketch-screenshot embedding space 
using its deep neural-network. Swire then performs a 3) nearest neighbor search in the embedding space and retrieves 4) design 
examples that have similar neural-network outputs as the user’s sketch query. 

ABSTRACT 
Sketches and real-world user interface examples are fre-
quently used in multiple stages of the user interface design 
process. Unfortunately, fnding relevant user interface exam-
ples, especially in large-scale datasets, is a highly challenging 
task because user interfaces have aesthetic and functional 
properties that are only indirectly refected by their corre-
sponding pixel data and meta-data. This paper introduces 
Swire, a sketch-based neural-network-driven technique for 
retrieving user interfaces. We collect the frst large-scale user 
interface sketch dataset from the development of Swire that 
researchers can use to develop new sketch-based data-driven 
design interfaces and applications. Swire achieves high per-
formance for querying user interfaces: for a known valida-
tion task it retrieves the most relevant example as within the 
top-10 results for over 60% of queries. With this technique, 
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for the frst time designers can accurately retrieve relevant 
user interface examples with free-form sketches natural to 
their design workfows. We demonstrate several novel appli-
cations driven by Swire that could greatly augment the user 
interface design process. 

CCS CONCEPTS 
• Human-centered computing → Human computer in-
teraction (HCI); • Computing methodologies → Com-
puter vision tasks; • Information systems → Information
retrieval.
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and form the basis for comparative evaluations [2, 9]. The 
recent introduction of data-driven design and the emergence 
of large-scale user interface (UI) datasets provide designers 
with large corpuses of real examples that refect multiple 
facets of successful designs [11]. These examples embody 
rich information such as popular visual illustrations, com-
mon fow patterns and high-fdelity layout implementations 
[6] that can greatly augment various design tasks [12, 18, 25].
Retrieving relevant design examples from large-scale UI

datasets, however, can be a daunting task. While designers 
can easily search for general categories of examples (e.g., UIs 
from all Dating Apps), conducting fned-grained searches 
based on visual layouts and content is much more difcult. 
Researchers have developed image-based UI retrieval system 
[27], but this technique alone is often unsuitable for retriev-
ing UIs because of their inherent semantic complexity. A 
successful UI retrieval technique needs to 1) allow users to 
easily express their query criteria in a way that can cover 
both visual layout and content; and 2) match these criteria 
with design information obfuscated by raw pixels and code 
in the design examples. 
Sketching is an efective visual medium for conveying 

design ideas. Designers use sketches to expand novel ideas, 
visualize abstract concepts, and rapidly compare alternatives 
[3]. Moreover, sketches are commonplace in design processes 
and typically require minimal efort for designers to produce. 
This suggests that sketches might be a good method by which 
designers could specify query criteria when searching UI 
corpuses, which motivates our investigation of sketch-based 
UI retrieval techniques in this paper. 
Using sketches as the querying modality also lends it-

self to the recent success of machine learning techniques 
in recognizing visual patterns. Since both sketches and UI 
screenshots contain complex visual features, we can develop 
deep-neural-network-based models to efectively learn cor-
respondences between sketches and UI screenshots for re-
trieval. 
Driven by the utility of using sketching as a medium for 

UI retrieval and the efectiveness of machine learning vi-
sion models, this paper introduces Swire, a sketch-based UI 
retrieval technique powered by neural networks. This pa-
per ofers two major contributions. First, we collected the 
frst large-scale sketch dataset consisting of 3802 sketches 
corresponding to 2201 UI examples from the Rico dataset 
[5] drawn by experienced UI designers recruited on an on-
line freelance work platform. This dataset allows us to de-
velop techniques capable of learning UI sketch patterns and
supports future work in this area. Second, this paper intro-
duces a versatile neural-network-based UI retrieval tech-
nique adopted from a common machine learning method
used for sketch-based image retrieval. This technique en-
ables sketches to be used by designers as a novel interaction

modality to interact with large-scale UI datasets. We present 
a quantitative evaluation of the accuracy of the model and 
derive qualitative insights from sample queries, expert evalu-
ation, and embedding values that refect the concepts learned 
by the network. Furthermore, we demonstrate Swire’s ca-
pability to support multiple novel sketch-based data-driven 
design applications that tightly integrate into the design pro-
cess. With Swire, we hope to enable design applications that 
help designers efortlessly gain inspirations, evaluate designs 
and communicate novel ideas. 

2 RELATED WORK 
Mobile User Interface Repositories 
Design examples are commonly curated and collected by 
designers to explore the design space and inspire new design 
ideas. The value brought by these examples has led to the 
creation of several large-scale mobile UI repositories, such as 
UXArchive [1], ERICA [6] and Rico [5]. Swire is developed 
by collecting a dataset of sketches from designers based on 
designs found in Rico. 
The Rico dataset consists of 72,219 unique UI examples 

from 9,722 Android apps. Each example consists of a screen-
shot and the corresponding view hierarchy data. Since Rico 
is crowdsourced from real crowdworkers’ interactions with 
the app, Rico also captures the user interaction information 
(e.g., clicks that lead to the current interface) during the data 
collection process. 

The Rico dataset has been shown to be useful in a number 
of machine-learning driven applications. The most notable 
application is a deep auto-encoder model that retrieves simi-
lar UIs based on the position of text and non-text elements [5]. 
While this model demonstrates Rico’s applicability on deep 
learning techniques, Swire explores retrieval with sketch-
ing, a modality that encapsulates richer requirements for a 
machine-learned model. 

Sketch-based User Interface Authoring and 
Manipulation 
Sketch-based interactions are commonly used in the early 
stages of the design process [17]. Thus, HCI researchers have 
explored sketch-based design applications to support these 
stages. SILK [13] is the frst system that allows designers to 
author interactive, low-fdelity UI prototypes by sketching. 
DENIM [14] allows web designers to prototype with sketches 
at multiple detail levels. 
Inspired by the efectiveness of sketching for authoring 

and manipulating UI designs, Swire uses sketching as a in-
teraction modality that allows designers to naturally query 
for relevant examples from large-scale UI datasets. 
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Sketch-based Image Retrieval and Sketch Datasets 
Sketch-based Image Retrieval is a frequently studied problem 
in the Computer Vision community. The standard sketch-
based image retrieval task involves users creating a simplistic 
sketch with binary strokes depicting minimal user-defned 
features of the target natural image. For instance, when a 
user desires to retrieve an image of a bird in a certain pose, 
the user would only sketch the outline of the target body of 
the bird and lines that delineates the bird’s wing. 
Since users often focus on the target objects within the 

images when attempting to retrieve these images, typical 
approaches in prior work are to frst obtain an edge-map 
of the original image that delineates the boundary between 
the (foreground) object and the background scene using an 
edge-detection technique, such as the Canny Edge Detec-
tor [4]. These approaches then match the edge-map with 
the user-created sketch using image similarity techniques. 
Researchers have developed a variety of image similarity met-
rics to improve retrieval performance, from the basic Peak 
Signal-to-Noise Ratio (PSNR) [26] to the more advanced Bag-
of-words (BoW) Histogram of Oriented Gradients (HOG) 
flters [10]. 

With the recent increasing popularity of neural networks 
and crowdsourcing, researchers have developed large-scale 
sketch datasets that correspond to natural image datasets to 
power neural-network-driven techniques for image-retrieval 
tasks. The TU-Berlin [8] and Sketchy [22] sketch datasets 
consist of crowdsourced sketches that are collected from 
crowdworkers by presenting them the original correspond-
ing natural images. Using these corresponding sketch-image 
pairs, neural networks are trained to directly encode match-
ing sketches and images to similar low-dimensional outputs. 
When retrieving images with a sketch query, the natural 
images are ranked by the distance (e.g., Euclidean Distance) 
between their neural-network outputs and the sketch query’s 
outputs. 
Swire is greatly infuenced by neural-network-based im-

age retrieval methods described above. In addition, we ex-
plore the use of BoW-HOG flters as a baseline method to 
demonstrate and contrast the high efectiveness of neural-
network-based Swire for retrieving UIs using sketches. 

3 USER INTERFACE SKETCH DATASET 
Our approach to recognizing and deriving patterns from 
sketches requires a dataset of actual sketches stylistically 
and semantically similar to designers’ sketches of UIs. To our 
knowledge, no large-scale public datasets of UI sketches are 
currently available, especially coupled with corresponding 
screenshots of real-world UIs. Hence, we collected sketches 
created by designers based on screenshots of original UIs 
in the Rico dataset. We hope to support the development of 

future sketch-based data-driven design applications by re-
leasing the dataset. The dataset is available at https://github. 
com/huang4fstudio/swire. 

Designer Recruitment and Compensation 
We recruited 4 designers through the freelancing platform 
Upwork. All designers reported having at least occasional 
UI/UX design experience and substantial sketching experi-
ence. In addition, all designers reported receiving formal 
training in UI design and degrees in design-related felds. 
They were compensated 20 USD per hour and worked for 
60-73 hours.

Dataset Statistics 
We collected 3802 sketches of 2201 UI examples from 167 pop-
ular apps in the Rico dataset. Each sketch was created with 
pen and paper in 4.1 minutes on average. Many UI examples 
were sketched by multiple designers. 71.0% of the examples 
were sketched by 2 designers, 28.1% of the examples were 
sketched by 1 designer and the remaining examples (< 1%) 
were sketched by 3 designers in our dataset. Our 4 designers 
sketched 505/1017/1272/1008 UIs respectively based on their 
availability. We allocated batches of examples to diferent 
combinations of designers to ensure the generality of the 
dataset. 
We did not have the resources to generate sketches for 

every UI in the Rico dataset, so we curated a diverse subset 
of well-designed UI examples that cover 23 app categories 
in the Google Play Store and were of average to high design 
quality. We omitted poorly designed UIs from the dataset 
because of the relative small size of the dataset for neural 
network training. Noise introduced into training by poor 
designs had the potential to negatively impact the training 
time and quality of our model. 

Data Collection and Postprocessing Procedure 
We supplied the screenshots of our curated examples to the 
recruited designers and asked them to create sketches cor-
responding to the screenshots with pen and paper. They 
were prompted to reconstruct a low-fdelity sketch from the 
screenshot as if they were the designers of the interfaces. We 
instructed them to replace all actual image content in the 
screenshot with a sketched placeholder (a square with a cross 
or a mountain) and replace dynamic text in the screenshot 
with template texts as shown in Figure 2. We added these 
instructions to obtain sketches with a more unifed repre-
sentation focused on the design layout of various UIs. These 
instructions also make it easier for the neural network to 
learn the concepts of images and text within the constraints 
of our small dataset. 
In order to efciently collect and calibrate sketches cre-

ated by multiple designers in various formats of photos and 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 104 Page 3

https://github.com/huang4fstudio/swire
https://github.com/huang4fstudio/swire


UI Screenshot Supplied 
to Designer

Designer Sketch on Template 
and Sends Photo/Scan Back

Post-process with Computer 
Vision Techniques

ArUco Marker for calibration

Template Text

Template Image

Figure 2: Data Collection Procedure. We frst send a UI 
screenshot (Left) and paper templates with ArUco markers 
to designers. Designers then sketch on the template and 
sends back a photo or a scan of the completed sketch (Mid-
dle). We then post-process the photo using Computer Vision 
techniques to obtain the fnal clean sketch dataset (Right). 

scans, we supplied them with paper templates with frames 
for them to sketch on as shown in Figure 2. These frames are 
annotated with four ArUco codes [16] at the corners to allow 
perspective correction. All photos and scans of the sketches 
are corrected with afne transformation and thresholded to 
obtain binary sketches as fnal examples in the dataset. 

4 DEEP NEURAL-NETWORK-BASED USER 
INTERFACE RETRIEVAL 

The main component of Swire is a deep convolutional neural 
network. The development of Swire consists of a training 
phase and a querying phase. During the training phase, we 
train Swire’s deep neural network to generate similar low-
dimensional outputs (64-dimensions) for matching pairs of 
screenshots and sketches, and dissimilar outputs for non-
matching pairs of screenshots and sketches. This training 
scheme is shown to be useful for sketch-based image retrieval 
[22]. In the querying phase, we use Swire’s trained neural 
network to encode a user’s sketch query and retrieve UIs 
with the closest output to the user’s sketch’s output. 

Many other best alternative solutions to sketch-based im-
age retrieval mentioned in Section 2 use fxed image features 
of the original image extracted with edge detection methods. 
These methods may work for certain types of UI designs that 
exhibit strong edges, such as a grid-based photo viewer, but 
this approach can be inadequate when the sketches of the 
UIs do not directly correspond to the edges. For example, 
list-based UIs without clear dividers will have edge-maps 
which correspond less to their sketches compared to their 
grid-based counterparts with clear dividers. 
Swire’s adoption of cross-modal embedding training has 

the advantage that it creates a unifed embedding space for 
both sketches and UIs with learned concepts based on their 
correspondences. This means Swire can be used to search a 

dataset of UIs using either sketches or actual screenshots as 
the querying modality. 

Network Architecture 
Since the system is required to match correspondence be-
tween images, we used two convolutional sub-networks to 
handle the two inputs of sketch-screenshot pairs. 

These two sub-networks are similar to VGG-A [24], a shal-
low variant of the state-of-the-art network that won the 
ILSVRC2014 image recognition challenge [21]. Our network 
consists of 11 layers, with fve convolutional blocks and three 
fully-connected layers. Each convolutional block contains 
two (one for the frst two blocks) convolutional layers with 
3x3 kernels and one max-pooling layer. The convolutional 
layers in the fve blocks have 64, 128, 256, 512, and 512 flters 
respectively. The frst two fully-connected layers have 4096 
hidden units. The last layer has 64 hidden units and outputs 
the 64-dimension embedding used for querying. The activa-
tion functions of all layers except the last layer are ReLU. 
The network architecture is described in detail in Figure 3. 

The fnal 64-dimensional output embeddings of the sub-
networks are trained to produce adequate embeddings rep-
resented as codes in the last layer. The model is trained with 
a pairwise sampling scheme described in the following sub-
section. 

Triplet Loss 
The model is trained with a Triplet Loss function [23, 28] 
that involves the neural-network outputs of three inputs: an 
‘anchor’ sketch s , a ‘positive’ matching screenshot i and a 

′ ‘negative’ mismatched screenshot i . This forms two pairs 
of input during training. The positive pair p(s, i)+ consists 
of a sketch-screenshot pair that correspond to each other. 
The negative pair p(s, i ′)− consists of a sketch-screenshot 
pair that does not correspond. The negative pair is obtained 
with the same sketch from the positive pair and a random 
screenshot sampled from the mini-batch. 

During training, each pair p(s, i) is passed through two sub-
networks such that the sketch sample s is passed through 
the sketch sub-network and outputs an embedding fs (s), 
and we similarly obtain the neural-network output of the 
screenshot fi (i). We compute the l2 distance D between the 
neural network outputs. For the positive pair, 

D(p(s, i)+) = | | fs (s) − fi (i)| |2
Similarly, for the distance of the negative pair, 

D(p(s, i ′)−) = | | fs (s) − fi (i ′)| |2
With these distances, we formulate a triplet loss function, 

L = D(p(s, i)+) + max (0,m − D(p(s, i ′)−)) 

m = margin between positive and negative pairs 
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Screenshot VGG-A Net (Same Network as above, Different Weights)
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Figure 3: Network Architecture of Swire’s Neural Network. Swire’s neural network consists of two identical sub-networks 
similar to the VGG-A deep convolutional neural network. These networks have diferent weights and attempts to encode 
matching pairs of screenshots and sketches with similar values. 

We maintain a margin m between the positive and negative 
pairs to prevent the network from learning trivial solutions 
(zero embeddings for all samples). 

Data and Training Procedure 
Since we collected data from four separate designers, we 
split the data and used data collected from three designers 
for training and from one designer for testing. This is to en-
sure that the model generalizes across sketches produced by 
diferent designers. In addition, we do not repeat interfaces 
from the same apps between the training and test sets. This 
creates 1722 matching sketch-screenshot pairs for training 
and 276 pairs for testing. 

During training, the sketches and screenshots are resized 
to 224 × 224 pixels, and the pixel values are normalized 
between (−1, 1) centered at 0. The network is trained using 
a Stochastic Gradient Descent Optimizer with a mini-batch 
size of 32. The learning rate is 1×10−2. The margin is 0.2 in all 
models. All hyper-parameters listed above were determined 
by empirical experiments on the training set. 

Qerying 
When the user makes a query with a drawn sketch, the model 
computes an output by passing the sketch through the sketch 
sub-network. This output is then compared with all neural-
network outputs of the screenshots of UI examples in the 
dataset using a nearest neighbor search. The UI results are 
ranked by the distance between their outputs and the user’s 
sketch’s output. 

5 RESULTS 
Baseline 
We implement a competitive non-neural baseline to evaluate 
the performance of our method. As described in Section 2, 
typical methods of sketch-based image retrieval involve two 

steps: 1) extract an edge-map from the original image to be 
queried, 2) match the edge-map using a specifc similarity 
metric. Using this framework, we frst extracted the edges 
of the screenshots using the Canny Edge detector [4]. We 
then extracted features from the edges using Bag-of-words 
(BoW) Histogram of Oriented Gradients (HOG) flters. BoW-
HOG flters is an advanced method of computing similar-
ity between images. It captures edge features in an image 
by computing the magnitude of gradients across the entire 
image with respect to multiple orientations. This method 
summarizes image features with fxed-length vectors that 
describe the occurrences and characteristics of edges in im-
ages. This method is highly efective for sketch-based image 
retrieval as it focuses on the characteristics of edges while 
being insensitive to local translations and rotations. 
After obtaining these fxed-length vectors, we compare 

them using Euclidean Distance as a simple metric to ob-
tain similarity values between images, and subsequently use 
these values to query for closest matching images (design 
screenshots in our case) to the sketch queries. 

Qantitative Results 
We use a test set that consists of 276 UI examples to compare 
Top-1 and Top-10 performances of BoW-HOG flters and 
Swire. The results are summarized in Table 1. We observe 
that Swire signifcantly outperform BoW-HOG flters for Top-
10 performance at 60.9%. For Top-1 accuracy, Swire achieves 
an accuracy of 15.9% which only slightly outperformed the 
strong baseline of BoW-HOG flters at 15.6%. This shows 
Swire to be particularly efective for retrieving complex ex-
amples from the dataset compared to the BoW-HOG flters. 
We believe deep-learning-based Swire is advantageous com-
pared to BoW-HOG flters that rely on matching edge-maps 
because UI sketches have semantic complexities that are not 
captured by edge-maps of screenshots. 
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Technique Top-1 Top-10 

(Chance) 0.362% 3.62% 
BoW-HOG flters 15.6% 38.8% 
Swire 15.9% 60.9% 

Table 1: Top-k Accuracy of Various Models on the Test Set. 
Swire signifcantly outperforms BoW-HOG flters. 

Qalitative Results 
We visualize query results from the test set to qualitatively 
understand the performance of Swire in Figure 4. Swire is
able to retrieve relevant menu-based interfaces despite the 
diference in visual appearance of the menu items (Exam-
ple a). Swire is also able to retrieve pop-up windows imple-
mented in various ways despite the drastic diference in the 
dimensions of the pop-up windows (Example b). We observe 
similar efcacy in retrieving settings (Example c), list-based
(Example f), and login layouts (Example e). Nevertheless, we 
observe that Swire sometimes ignores smaller details of the 
interfaces described by sketched elements. This limitation 
will be further discussed in Section 7. 

Expert Evaluation 
To better evaluate Swire’s performance from professional 
users’ perspectives, we recruited 5 designers on Upwork with 
substantial experience in mobile UI/UX design to evaluate 
selected results from the test set. There was no overlap be-
tween these designers and those recruited for creating the 
dataset. We provided them with 9 sets of query sketches and 
the corresponding Top-10 retrieved results for each query 
from the test set. The 9 sets consist of 3 ‘best’ results (the 
corresponding screenshot of the sketch query is retrieved 
as the Top-1 result), 3 ‘mediocre’ results (the corresponding 
screenshot of the sketch query is retrieved within the Top-10 
results, but not Top-1), and 3 ‘poor’ results (the correspond-
ing screenshot of the sketch query is not retrieved within 
the Top-10 results). We asked the designers to provide com-
ments on each set of results regarding the relevance between 
the sketches and the screenshots, and to comment on the 
potential integration of this tool into their design workfows. 
Most designers agreed that all retrieved results in the 

‘best’ result sets are relevant to the query, and they would be 
satisfed with the results. They were especially satisfed with 
a result set of sliding menus (also shown in Figure 4a). They 
were able to identify the results as ‘variations on the theme 
of navigation drawers’ (D3) or ‘slide out modal pattern.’ (D2) 
Moreover, the designers also expressed satisfaction towards 
some sets of ‘mediocre’ results. Most were satisfed with a set 
of results that ‘show variations of the top tabbed navigation’ 
(D5) which is a common design pattern. 

Query Results (Ranked 1, 2, 3)

a)

b)

c)

d)

e)

f)

Figure 4: Query Results for Complete Sketches. Swire is able 
to retrieve common types of UIs such as sliding menus (a), 
settings (c), and login (e) layouts. 

On the other hand, some designers considered the ‘poor’ 
results unsatisfactory. For example, designers were less sat-
isfed with the model’s performance on a sign-up sketch, 
commenting that the model only gathered screens with sim-
ilar element layouts while ignoring the true nature of the 
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Sliding Menus

Facebook 
Login 

Onboarding 

Figure 5: t-SNE Plot of the Embedding Space. Swire is able 
embed semantically similar UIs into multiple clusters. For 
instance, tutorial screens, onboarding screens and sliding 
menu each form their own clusters in the embedding space. 

parts of the UI sketched by the user. This model allows de-
signers to quickly gain design inspirations that are relevant 
to the key UI elements desired by them. 

In the training and querying phases of Swire-segments, UI 
examples are split into small parts. Designers can thus specify 
one-or-more parts of the UI to be matched by the model with 
the examples in the dataset. We compute an embedding for 
each part of the interface and match only the embeddings of 
the parts specifed by the users for retrieval. Example a in 
Figure 6 demonstrates that Swire-segments is able to retrieve 
multiple designs that all contain the Floating Action Button 
(FAB, a popular Android design paradigm) but with diverse 
layouts. Swire-segments is also able to retrieve interfaces 
with only tab-based top bars in common (see Example b). 
These examples show that Swire-segments is able to remain 
agnostic to the unspecifed part of the sketch queries. 

Evaluation with Alternative Designs 
Designers often explore alternative design examples to sup-
port the implementation and comparative evaluation [9] of 
their own designs. HCI research literature also recommends 
the use of parallel prototyping techniques to obtain better f-
nal products through extensive comparison [7]. Swire is able 
to support design comparisons because it enables querying 
for similar UIs with high-fdelity UI prototypes. 
Swire is efective in retrieving similar UIs because the 

visual content of UI screenshots are reinforced with the se-
mantic structure of sketches in the embedding space during 

input felds and buttons in the query (D3). However, D4 con-
sidered ‘rows of design elements’ common in the results 
relevant to the sketch, and D1 considered two similar sign-
up screens retrieved by the model as strong results even they 
did not match up perfectly with the sketch. 

In general, we observed that designers were more satisfed 
with the results when the model was able to retrieve results 
that are semantically similar at a high-level instead of those 
with matching low-level element layouts. Notably, D1 com-
mented that we ‘probably already considered the common 
UI sketch patterns and train’ our ‘system to match it up with 
image results,’ which refects the efectiveness of Swire in de-
tecting common UI patterns in some instances provided that 
it was not specifcally trained to recognize these patterns. All 
designers also considered Swire to be potentially useful in 
their workfows for researching, ideating and implementing 
novel designs. 

Embedding Understanding 
Since we obtained fxed-length embedding values by encod-
ing all UIs in the dataset with our trained networks, we 
project each data point in the training set in this embedding 
space to a 2-D fgure using the dimensionality reduction 
method t-SNE [15] (see Figure 5). t-SNE is an optimization-
based method that is capable of constructing projections that 
faithfully present distances between data points in the origi-
nal dimensionality. We fnd clear clusters of sliding menus, 
Facebook login screens and onboarding screens, which sug-
gests that Swire is categorizing UIs at least in part by their 
overall structure. 

6 APPLICATIONS 
In Section 5, we evaluated and validated Swire’s efectiveness 
for generally fnding design examples through sketch-based 
queries. Since both sketches and UI design examples are 
commonly used in early stages of the user interaction design 
process as reported by a variety of prior studies [9, 17], we 
explore the potential usage of Swire through several design 
applications in this section. Prototypes of these applications 
implemented with the Jupyter Notebook are available at 
https://github.com/huang4fstudio/swire. 

Auto-completing Partial Designs 
Sketches are often used for rapid exploration of potential de-
sign solutions [3]. Designers use partial sketches to express 
core ideas, while leaving out parts of the interface in sketches 
for considering viable design alternatives. We trained an al-
ternative model Swire-segments on partial sketches of UIs, 
which allows us to ‘auto-complete’ the remaining UI by re-
trieving a variety of examples that are only required to match 
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53739
(Match any 
Results)

(Match any 
Results)

Query Results (Ranked 1, 2, 3)

a)

b)

Figure 6: Autocomplete Query Results. Swire is able to re-
trieve interfaces only based on parts specifed by users’ 
sketches while remaining agnostic to other parts of the UIs. 

training. Swire can thus be used as a semantically-aware 
similarity metric between interfaces. 

Figure 7 shows that Swire retrieves similar menus (Exam-
ple a), login screens (Example b), list-based UIs (Example c), 
and grid-based UIs (Example d) when querying with high-
fdelity screenshots. Most notably, Swire is able to retrieve 
multiple types of list-based UIs despite diferences among the 
individual items within the lists in Example c. This enables 
efective comparison between similar designs with slight 
variations. 

User Flow Examples 
Beyond querying for single UIs, designers also use sketches 
to illustrate user experience at multiple scales [17], such as 
conveying transitions and animations between multiple in-
terfaces. Since the Rico dataset also includes user interaction 
data, we use this data to enable fow querying with Swire. De-
signers can use this application to interact with interaction 
design examples that can accelerate the design of efective 
user fows. 

To query fow examples in the dataset, since Swire creates 
a single embedding for each UI, we can match an arbitrary 
number of interfaces in arbitrary order by concatenating the 
embedding values during the ranking process of querying. 
Figure 8 shows the results of querying for two sketches that 
occur consequently in a user interaction. Swire is able to 
retrieve registration (Example a) and ‘closing menu’ (Exam-
ple b) fows that are commonly implemented by designers. 

Query Results (Ranked 1, 2, 3)

a)

b)

c)

d)

Figure 7: Alternative Design Query Results. Swire is able to 
retrieve similar UIs in the dataset from queries of complete, 
high-fdelity UI screenshots. 

Since Rico also contain transition details between each con-
sequent UIs, these examples can demonstrate popular ani-
mation patterns [6] that provide inspiration to interaction 
and animation designers. 

7 DISCUSSION 
Limitations 
Despite Swire’s success in retrieving relevant UI examples, 
we observed its inability to obtain a fne-grained semantic 
understanding of certain sketches. Figure 9 shows several 
modes of the failure cases we observed during the evaluation 
of Swire. 
The frst mode occurs when Swire handles rare, custom 

UI elements as exhibited by Example a. Swire failed to under-
stand the sophisticated weather chart and retrieved another 
interface with similar layouts as the most relevant result 
with the query. 
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Query

Results (Ranked 1, 2)Query

a)

b)

Figure 8: Flow Query Results. Swire is able to query UIs with 
multiple sketches concurrently to retrieve user fows. 

Query Results (Ranked 1, 2, 3)

a)

b)

Figure 9: Failure Modes of UI Retrieval using Swire. Swire 
failed to understand a) custom and b) colorful UI elements. 

The second mode is Swire’s failure in understanding UIs 
with diverse colors, such as those with image backgrounds. In 
Example b, Swire confused a login screen with a background 
image, although the most relevant UI was still ranked in the 
second place. 

Future Work 
There are a number of improvements to the current Swire 
model that could be made in future work. 

As Swire focuses primarily on the high-level layout infor-
mation of the sketches, we believe that it could be improved 
through incorporating an understanding and control of in-
dividual elements in the sketches. One viable solution is to 
train an element-level sketch recognition model to recognize 
specifc types of elements sketched by the users in certain re-
gions, such as using a Region Proposal Network introduced 
in Faster-RCNN [19]. 

The model currently does not explicitly consider stylistic 
features and context information in its embedding space. 
In future work, contextual information can potentially be 
included in the model by processing content in the interfaces 
using topic modeling. Stylistic understanding of interfaces 
can be approached using feature engineering by considering 
visual features in the interface using style heuristics [20] and 
users’ feedback. 

The neural network in Swire currently only takes screen-
shots and sketches as inputs. While visual content provides 
some structural and semantic information about the UIs, we 
believe Swire can be improved by also including structured 
UI Hierarchy trees consisting of each element’s properties as 
an additional input to the network. The inclusion of UI Hier-
archies would add rich structural and semantic information 
that could potentially improve Swire’s understanding of UIs. 
A natural extension to this query model work would be 

to explore generative models that produce high-fdelity UI 
mock-ups from sketch-based inputs. While multiple auto-
mated methods have been developed in the past, they have 
failed to gain traction due to their unpredictability and the 
low ceiling of their generated interfaces. Recent advances 
in deep-learning methods for program synthesis contribute 
new promising results in this area, and could suggest path 
forward to sketch-based UI generation. We believe that the 
dataset contributed by this paper can support the develop-
ment of such approaches to UI generation. 
Finally, while this paper demonstrates Swire’s capability 

and potential in supporting design applications, these ap-
plications are currently rough prototypes that are not yet 
suitable for everyday use by designers. We plan to further 
develop these applications and explore how they integrate 
into the design and software engineering processes. Stud-
ies of their usage will inform design and implementation 
choices, such as the visual representation of UI examples in 
the application and the underlying datasets to be queried. 

8 CONCLUSION 
This paper presents Swire, a sketch-based UI retrieval tech-
nique that enables designers to interact with large-scale UI 
datasets using sketches. During the development of Swire, 
we collected a dataset of sketches corresponding to UIs that 
is able to support researchers in developing further sketch-
based data-driven applications. Trained on this dataset, 
Swire’s fexible deep-learning model achieves high perfor-
mance in retrieving UIs and supports multiple practical de-
sign applications. Through the development of Swire, we 
hope to provide designers with relevant materials and com-
putational resources to focus on creative and innovative tasks 
in the design process. 
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