
SCWM : An Intelligent Constraint-Enabled Window Manager

Greg J. Badros Jeffrey Nichols Alan Borning
{gjb,jwnichls,borning }@cs.washington.edu

Dept. of Computer Science and Engineering
University of Washington, Box 352350

Seattle, WA 98195-2350, USA

Abstract

Typical window management systems rely on direct
manipulation techniques to organize and layout win-
dows. Direct manipulation encourages the user to spec-
ify particular locations rather than higher-level inten-
tions and desires regarding window layout. Our Scheme
Constraints Window Manager (SCWM) allows users to
express their intentions using both direct manipulation
and higher-level commands. Because some user desires
are for persistent relationships to hold among windows,
we embed a constraint solver to maintain user-specified
constraint-based relationships. To enable using con-
straints and expressing other layout intentions, we have
explored a number of interaction paradigms, including
voice recognition. The result is a window manager with
much more intelligent window layout and behaviour.

Introduction
Window management systems typically use direct manipu-
lation (Schneiderman 1983) to support window layout. To
move a window, the user simply drags the window to the de-
sired location. Similarly, to resize a window, the user grabs
a handle at a corner of the window frame and drags it to
specify the new desired size.

Sometimes direct manipulation is exactly the right way
to manage layout. A user might really want this window
to be at a specific position on the display. Often, though,
the user has a high-level intention that is being expressed
at a lower level by direct manipulation. For example, when
a web browser bookmarks window pops up, a user might
choose to move it next to the main browser window. The
user’s intent is not that the bookmarks window be at that
specific location on-screen, but rather that the two windows
be adjacent. Various layout systems support more accurate
placing of windows via a “snapping” mechanism (e.g., snap-
dragging (Bier & Stone 1986)). However, those systems still
do not capture the true intent that the two windows remain
adjacent. Maintaining the relationship requires more sophis-
ticated techniques.

One useful extension to basic snapping is “augmented
snapping” (Gleicher 1992). Using this technique, the user
has the option of transforming a snapped-to relationship to

Copyright c© 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

a persistent constraint that is then maintained during sub-
sequent manipulations. The primary shortcomings of aug-
mented dragging are that the user still needs to place the
window initially and that only an adjacency relationship is
supported. Without more general techniques, a user cannot
have a window remain to the left of another window (but not
necessarily attached).

One approach that supports higher-level intentions is to
provide the means for users to more directly state their goals.
An excellent example is the “maximize window” function-
ality of many windowing systems. Instead of requiring users
to move and resize a window, they can simply click a button
to request that the window fill the screen. Window systems
that enable better expression of users’ desires can be less te-
dious to use. By allowing users to inform the windowing
system about what they are doing at a higher level, the win-
dow manager can better support them in the multitude of
activities that encompass a typical work session.

We have developed a new X window manager as a plat-
form for research on more advanced and intelligent window
layout and interaction paradigms. Our Scheme Constraints
Window Manager, or SCWM (Badros & Stachowiak 1999;
Badros, Nichols, & Borning 2000b), improves the state of
the art in providing smart window layout. We achieve this
as a result of two significant design decisions: 1) to embed
a Scheme interpreter as its extension language; and 2) to
embed the Cassowary constraint solving toolkit (Badros &
Borning 1998) to support declarative specification and main-
tenance of layout constraints. This architecture provides a
dynamic, extensible, programmable window manager that
enables us to rapidly prototype and experiment with ad-
vanced layout techniques and more intelligent interactions.

Higher-Level Window Layout
Ordinary direct manipulation of windows does not preserve
enough information for sophisticated window layout. Sup-
pose a user wishes to center a window on the screen. If
the window is just dragged to the center of the display, no
knowledge of the intention of the user is acquired. This
shortcoming becomes a problem when, for example, the user
later enlarges the font for that application, thus causing the
window to grow. Because a conventional windowing sys-
tem knows only the absolute position of the top-left corner
of the window, it cannot be clever in ensuring that the win-



Figure 1: Resizing a window. In the leftmost screenshot, a window appears in the center of the screen. If that window was
moved there via ordinary direct-manipulation and the font is then made larger, it might resize by growing to the southeast, as
shown in the middle screenshot. However, if the user’s intention was that the window stay in the center of the screen, then the
rightmost illustration is the desired outcome and is how SCWM behaves after shoving the window to the center.

dow remains centered. With SCWM, the user can instead
ask to “shove” a window to the middle of the screen. The
windowing system then has the extra knowledge to resize
the window appropriately when the user later increases the
font size, resulting in the window staying in the center of the
screen (figure 1).

Supporting this kind of higher-level information regard-
ing layout is fundamentally important for improving the in-
teraction between users and their windowing systems. Some
user desires, such as moving a window to the side of the
screen when switching tasks, may require just a single ac-
tion by the window manager, while others may require per-
sistent behavior, as when the user moves two windows to-
gether and expects them to remain connected through sub-
sequent moves and resizes.

For higher-level layout to be of benefit, it must be excep-
tionally easy and unintrusive for users to express their de-
sires. For advanced users, key-bindings are ideal but difficult
to discover without corresponding menu items marked with
the key-binding. An attractive alternative is voice recogni-
tion. In SCWM, a user can center a window simply by say-
ing aloud “Center current window.” The voice recognition
interface to window layout and control encourages the user
to express higher level intention: it is far more awkward to
say “move window to 379, 522” than it is to say “move win-
dow next to Emacs.” In this way, the voice interface usefully
contrasts with direct manipulation where exact coordinates
naturally result from the interaction technique. Addition-
ally, voice-based interactions may prove especially valuable
for disabled users for whom direct manipulation is difficult.

Since user desires are often for persistent relationships
among windows, we provide a user interface that permits
declarative specification of these constraints that SCWM then
maintains dynamically.

Constraints
Our constraint interface employs an object-oriented design.
We specify numerous constraint classes representing kinds
of constraint relationships, and zero or more instances of
each class are added to the system for maintaining relation-
ships among actual windows. The interface allows users

to create constraint objects, to manage constraint instances,
and to create new constraint classes from existing classes by
demonstration.

Applying Constraints
Applying constraints to windows is done using a toolbar.
Each constraint class in the system is represented by a but-
ton on the toolbar (figure 2). The user applies a constraint
by clicking a button, then selecting the windows to be con-
strained. Alternatively, the user can first highlight the win-
dows to be constrained, and then click the appropriate but-
ton. Icons and tooltips with descriptive text assist the user
in understanding what each constraint does. We consulted
with a graphic artist on the design of our icons in an effort to
make them intuitive and attractive. Preliminary user studies
have demonstrated that users can guess the represented re-
lationship reasonably well from the icons even without the
supporting tooltip text.

We provide the following constraint classes in our system.
Most interesting relationships are either present or can be
created by combining classes in the list.

Constant Height/Width Sum Keep the total of the height/
width of two windows constant.

Horizontal/Vertical Separation Keep one window always
to the left of or above another.

Strict Relative Position Maintain the relative positions of
two windows.

Vertical/Horizontal Maximum Size Keep the height/
width of a window below a threshold.

Vertical/Horizontal Minimum Size Keep the height/
width of a window above a threshold.

Vertical/Horizontal Relative Size Keep the change in
heights/widths of two windows constant (i.e., resize them
by the same amount, together).

Vertical/Horizontal Alignment Align the edge or center of
one window along a vertical/horizontal line with the edge
or center of another window.

Anchor Force a window position to stay in place.

2



Figure 2: Our constraint toolbar. The leftmost button is used to start and stop the constraint-recorder, and the text describes the
constraint classes represented by the other buttons in the same order as they are laid out in the toolbar (from left to right).

Some of these constraint types can constrain windows in
several different ways. For example, the “Vertical Align-
ment” constraint can align the left edge of one window with
the right edge of another or the right edge of one window
with the middle of another. Users specify the parameters of
the relationship by using windownonants(figure 3). The
nonant that the user clicks in dictates the part of the win-
dow that the constraint relates. For example, if the user
selects the “Vertical Alignment” constraint and chooses the
first window by clicking in any of the east nonants and the
second window by clicking on its left edge, the resulting
constraint will hold the right edge of the first window in line
with the left edge of the second. Using nonants makes some
constraint classes, such as alignment, more flexible and de-
creases the number of buttons on the toolbar. Too many
narrowly-applicable constraint classes would make the tool-
bar unwieldy.

N NENW

W C E

SW S SE

3 4 5

6 7 8

0 1 3

Figure 3: The nine nonants of a window. Clicking in a spe-
cific region of a window permits the user to express desires
about an edge or corner instead of always meaning the win-
dow’s center or top-left.

Managing Constraints
Once a constraint is applied, the user still needs to be able
to manage it. Users may wish to disable the constraint tem-
porarily or remove it entirely. They may also encounter an
odd behavior while they are moving or resizing a window
and want to discover which constraint(s) caused the unex-
pected result. They may simply be curious to know what
constraints are applied to a given window and how that win-
dow will interact with other windows. Our constraint inves-
tigation interface allows for all of these kinds of interactions.

The primary means of inspecting constraints is through
visual representations superimposed directly on the win-
dows that the relationship involves (figure 4). When the
mouse pointer hovers over a constraint in the investigator,
the representation of that constraint is drawn. This feature

makes it easy for the user to make the correct associations
between windows and constraints. Each constraint class also
defines its own visual representation, which in most cases
closely matches the icon in the toolbar.

The constraint investigation window also allows the user
to enable and disable constraints via a checkbox and to re-
move constraints via a delete button. The constraint inves-
tigator can be kept on-screen at all times and dynamically
updates as constraints are applied and removed. Together
with the visual representation system, the investigation win-
dow makes it easy to manipulate constraints.

Figure 5: Four windows tiled together. Unlike tiled-only
window managers, SCWM permits users to simply tile a sub-
set of their windows; other windows overlap arbitrarily.

A problem with the interface as described thus far is that
the basic constraint classes, such as “Vertical Alignment”
and “Horizontal Separation,” are not always sufficient to
convey a user’s intention fully. Our own use showed that
often one needs to combine several constraints to obtain the
desired behavior. A good example of this situation is tiling
(figure 5), where two or more windows are aligned next to
each other such that they appear to become a window unit
of their own. A tiling configuration for two windows can
take from three to five constraints to implement. Adding
the constraints can become tedious when tiling many win-
dows or when repeatedly tiling and untiling two windows.
Certainly a “tiled windows” constraint class could be hard-
coded into the system, but that just postpones the problem—
some means of abstracting relationships must be provided to
the end user.

Our solution to this problem was to create constraint
“compositions.” A composition is created by a simple
programming-by-demonstration technique. We record the

3



Figure 4: Visual representation of constraints. XTerm A is constrained to be to the left of XTerm B, and above XTerm C.
Additionally, XTerm C is required to have a minimum width, and the XEmacs window’s southeast corner is anchored at its
current location. The constraint investigator that allows users to manage the constraints instances appears in the bottom left of
the screen shot.

user applying a constraint arrangement to some windows in
their workspace. The constraints used and the relationships
created among the windows are saved into a new constraint
class object. This class object appears in the toolbar like all
other constraint classes. Clicking the button in the toolbar
will prompt the user to select the same number of windows
as was used when recording. The constraints will then be
applied in the same order as before. Compositions allow
users to accumulate a collection of often-used constraint
configurations that can then be easily applied.

Implicit Constraints

Our graphical interface is not intended to be the only mech-
anism for adding constraints to the system. Minimizing the
effort needed to achieve a desired layout is important. In the
ideal case the windowing system would infer useful relation-
ships without requiring interaction from the user. To this
end, SCWM supports augmented snap-dragging whereby a
strict-relative-position constraint is inferred when windows
are placed directly adjacent to one another. SCWM also per-
mits programmers to specify Scheme code that automati-

cally adds constraints when windows first pop up. For exam-
ple, the procedure that controls placement for windows that
are “Netscape: Find” dialog boxes puts the new window at
the top right corner of the most-recently focused Netscape
browser window and constrains its northeast corner to the
browser’s northeast corner using the strict-relative-position
relationship. Analogous placement procedures can be writ-
ten for other application types. Ultimately, we expect to ex-
tend our interface to permit specifying these kinds of rules
at a higher level or to infer them automatically.

Animation for Understanding Constraints

One of the major behavioural changes introduced by
using constraint-based window layout is that global rear-
rangements of windows are possible. In a conventional
direct-manipulation interface, the only window that moves
is the one currently being dragged. In SCWM, however,
moving one window can affect arbitrarily many other
windows. Large changes in position are possible, especially
when adding and removing constraints. To make these
discontinuities less confusing, we animate windows fluidly

4



from their old positions and sizes to their new configuration.
The animations borrow features from the Self pro-

gramming environment that mimic cartoon-style anima-
tion (Chang & Ungar 1993). As a window is animated to a
new position to its left, the window gives a subtle indication
that it is active by a quick anticipatory move to the right.
It then begins moving to the left, accelerating first, then
decelerating to a stop to give the impression of momentum
and reinforce the concreteness of the windowing metaphor.

The animations are not limited to constraint effects. When
a user shoves a window to the northeast corner of the screen,
the window animates smoothly. Similarly, when a window is
iconified, an outline of the window shrinks and moves to the
position where the icon will rest. Although these features are
neither new nor unique to SCWM, they are especially impor-
tant in helping the user understand the effects of constraints
and maintain orientation as global rearrangements occur.

Enabling Technologies
A system of supporting infrastructure enables SCWM to pro-
vide all of its sophisticated features while maximizing reuse.

The X Windows System andfvwm2
One of the fundamental design decisions for the X win-
dowing system (Nye 1992) was to permit an arbitrary user-
level application to manage the various application win-
dows. This open architecture permits great flexibility in the
way windows look and behave.

X window managers are complex applications. Many
Xlib library functions wrapping the X protocol are specific
to the extraordinary needs of window managers. Since the
goal of SCWM is to do interesting research beyond that of
modern window managers, we used an existing popular win-
dow manager,fvwm2 , as our starting point (fvwm 1999). In
1997 when the first author began the SCWM project with
Maciej Stachowiak,fvwm2 was arguably the most used
window manager in the X windows community. It supports
reasonably sophisticated configuration capabilities via a per-
user.fvwm2rc file that is loaded once whenfvwm2 starts.
To tweak a parameter, end users edit their.fvwm2rc files
using an ordinary text editor, save the changes, then restart
the window manager to activate the change. Thefvwm2
configuration language supports a very restricted form of
functional abstraction, but it lacks loops and conditionals.

Despite these shortcomings,fvwm2 does provide a
good amount of control over the look of windows and
has evolved over the years to meet complex specifications
(e.g., the Interclient Communication Conventions Manual,
or ICCCM (Rosenthal1994)) and deal with innumerable
quirks of applications. By basing SCWM on fvwm2 , we
leveraged those capabilities to ensure that SCWM was at
least as well-behaved asfvwm2 . The fundamental change
to fvwm2 was to replace its ad-hoc configuration language
with a version of Scheme called Guile, the GNU project’s
Ubiquitous Intelligent Language for Extension (FSF 1999).

Scheme as the Extension Language
Guile is a R4RS-compliant Scheme (Clinger & Rees 1991)
system designed specifically for use as an embedded in-

terpreter. Scheme is a very simple, elegant dialect of the
long-popular Lisp programming language. It is easy to learn
and provides exceptionally powerful abstraction capabilities
including higher-order functions, lexically-scoped closures,
and a hygienic macro system. Guile extends the standard
Scheme language with a module system and numerous sys-
tem libraries wrappers (e.g., POSIX file operations).

Most fvwm2 commands have reasonably straightforward
translations to SCWM symbolic expressions. For example,
thesefvwm2 configuration lines:

Style "*" ForeColor black
Style "*" BackColor grey76

HilightColor white navyblue

AddToFunc Raise-and-Stick
+ "I" Raise
+ "I" Stick

Key s WT CSM Function Raise-and-Stick

are rewritten for SCWM in Guile/Scheme as:

(window-style "*" #:fg "black"
#:bg "grey76")

(set-highlight-colors! "navyblue" "white")

(define* (raise-and-stick
#&optional (win (get-window)))

(raise-window win)
(stick-window win))

(bind-key ’(window title) "C-S-M-s"
raise-and-stick)

Although Scheme’s simple and regular syntax is more
convenient for the end user, the greatest advantage of using
a real programming language instead of a static configura-
tion language comes from the ability to extend the set of
primitive commands and to combine those new primitives
arbitrarily.

Adding a new SCWM primitive is easily done by writing
a new C function that registers itself with the Guile inter-
preter. For example, after adding an “X-property-get ”
primitive, we can write:

(define*-public
(window-class

#&optional (win (get-window)))
"Return the class of window WIN."
(X-property-get win "WM_CLASS"))

(bind-key ’all "A-f"
(lambda ()

(let* ((win (window-with-focus))
(class (window-class win)))

(if (string=? class "Emacs")
(resize-window 500 700 win)
(resize-window 400 300 win)))))

The above expressions, when evaluated in SCWM’s inter-
preter, will make the user’s “Alt + f ” keystroke resize the
window to either 500 by 700 pixels if the currently-focused

5



window is anEmacs application window, or 400 by 300
pixels otherwise.

The preceding example is just a small taste for the power
of embedding a Turing-complete extension language in an
application. The Emacs text editor was the first application
to advocate this architecture and has demonstrated the de-
sign’s power with its wild success (Stallman 1981). Others
have since developed extension languages and further advo-
cated the benefits of scripting for applications (Ousterhout
1998).

The voice recognition module is an excellent example of
how our extensible architecture enabled a surprisingly fast
implementation of a seemingly-complicated new feature.
After getting a sample program from IBM’s ViaVoicetm

voice recognition engine working, it required less than
six hours of development effort to wrap the engine with a
Scheme interface and embed it as a dynamically-loadable
SCWM module. A grammar describes the various utterances
that are understood, and a procedure is asynchronously
invoked when a phrase is recognized.

The advantages of SCWM’s extensible architecture are
even more recognizable in the presence of independently-
developed Guile extensions that are then accessible to the
window manager. Via standard Guile modules, Scwm can
read web pages, download files via ftp, do regular expres-
sion matching, and much more. Most significant to SCWM
though, is the Guile module that wraps our Constraint Solv-
ing Toolkit, Cassowary (Badros & Borning 1998).

The Embedded Constraint Solver
Cassowary is a constraint solving toolkit that supports
both arbitrary linear arithmetic equalities and inequalities.1

Constraints of varying strengths (e.g.,required, strong, and
weak) can be specified—stronger constraints are satisfied in
preference to weaker ones. We implemented the Cassowary
toolkit in C++, Java, and Smalltalk and created a wrapper
of the C++ implementation for Guile/Scheme. This Scheme
wrapper enables us to access the full power of the constraint
solver flexibly and dynamically.

To connect the constraint solver with the window man-
ager, the variables known to the solver must relate to as-
pects of the window layout. Each application window has
four constrainable variables:x , y (the offsets of the win-
dow from the top-left corner of the virtual desktop) and
width , height (the dimensions of the window frame in
pixels). When Cassowary finds a new solution to the set
of constraints, it invokes a hook for each constraint vari-
able whose value it changes; it invokes another hook after
all changes have been made. For SCWM, the constraint-
variable-changed hook adds the window that embeds that
constraint variable to its “dirty set” and the second hook
repositions and resizes all of the windows in the dirty set.

To make it easy to express constraints among win-
dows, the constraint variables embedded in each win-
dow are available via the accessorswindow-clv-

1Cassowary also supports a limited set of finite domain con-
straints, but we currently use that capability only in a constraint-
based web browser prototype.

{xl,xr,yt,yb,width,height }, where, for example,
-xl names thex coordinate of the left side of the window
and-yb abbreviates they coordinate of the bottom of the
window.2 Thus, to keep the tops of two window objects
aligned, we can use:

(cl-add-constraint solver
(make-cl-constraint

(window-clv-yt win1) =
(window-clv-yt win2)))

These primitive constraint-creation constructs are then
wrapped by the user interface described in a preceding
section to make them accessible to the end user.

Related Work
There is considerable early work on windowing sys-
tems (Gosling 1986; Gosling & Rosenthal 1986;
Myers 1984; 1986; 1988; Manasse & Nelson 1991).
Many of these projects addressed lower-level concerns that
a contemporary window manager can ignore. An issue
that does remain is tiled vs. overlapping windows. SCWM,
like nearly all windowing interfaces of the 1990s, chooses
overlapping windows for their generality and flexibility.
However, unlike other systems, SCWM’s constraint solver
can permit arbitrary sets of windows to be maintained in a
tiled format of a given size.

Although there are literally dozens of modern window
managers in common use on the X windowing platform,
only two (besidesfvwm2 ) are especially related to SCWM.
GWM, the Generic Window Manager, embeds a quirky di-
alect of Lisp called “WOOL” for Window Object Oriented
Language (Nahaboo 1995). It supported programmability,
and some of its packages, such as directional focus chang-
ing, inspired similar modules in SCWM. Sawmill is a new
window manager with an architecture similar to GWM and
SCWM (Harper 1999). Like GWM, it embeds its own unique
dialect of Lisp (called “rep”). Both embrace the extensibility
language architecture and provide low level primitives, then
implement other features in their extension language. How-
ever, the embedded Lisp dialects used by GWM and Sawmill
both suffer from a lack of standardization; worse, GWM’s
Lisp does not even support the lexical closures that Scheme
provides SCWM. Neither GWM nor Sawmill has any con-
straint capabilities, though the hooks they provide can per-
mit procedural implementations to approximate some of the
simpler constraint-based behaviours that SCWM affords.

Elastic Windows (Kandogan & Shneiderman 1996; 1997)
is an interesting recent windowing system that uses space-
filling tiled layout. The Elastic Windows system does not
provide general constraint capabilities, but instead does its
layout by the implicit automatically-maintained tiling and a
dynamically-alterable hierarchy of windows.

Numerous other application domains have used con-
straint solvers. Early work includes the drawing tool
Sketchpad (Sutherland 1963) and the simulation laboratory
ThingLab (Borning 1979). Many other drawing programs

2For each window, explicit constraintsxr = x + width
andyb = y + height are added automatically by SCWM.

6



have embedded constraint solvers over the years including
Juno (Nelson 1985), Juno-2 (Heydon & Nelson 1994),
Unidraw (Helmet al. 1995), and Penguin (Chok & Marriott
1998). Unidraw and Penguin both leverage QOCA, a
constraint solver that (like Cassowary) is able to maintain
arbitrary linear arithmetic constraints (Marriott, Chok, &
Finlay 1998).

Web browser layout presents challenges similar to win-
dow layout. Our “Constraint Cascading Style Sheets” work
also embeds Cassowary and exposes a declarative speci-
fication language to web authors for describing page lay-
out (Badroset al. 1999). Widget layout in user interfaces is
yet another two-dimensional layout problem. Amulet (My-
erset al. 1997) and the earlier Garnet (Myerset al. 1990)
both provided constraint solvers based on simple local prop-
agation techniques. These solvers suffer from an inability to
handle inequalities and simultaneous equations, which un-
fortunately arise all too often in the natural declarative spec-
ification of layout desires.

Conclusions and Future Work
One of the most useful aspects of this research has been the
continuous feedback from our end users throughout the de-
velopment of SCWM. Since 1997, we have made the latest
version of SCWM (along with all of its source code) avail-
able on the Internet, and we have actively solicited feedback
on our support mailing lists. Many of the high-level layout
features were developed in response to real-world frustra-
tions and annoyances experienced either by the authors or
by our user community. Although cultivating that commu-
nity has taken time and effort, we feel that the benefits from
user feedback outweigh the costs.

Much needs to be done to continue to improve SCWM and
achieve a better understanding of how we can better support
the intelligence our users demand from their window man-
ager. We have done some user testing (Badros, Nichols, &
Borning 2000a), and more user studies will prove useful to
better quantify what benefits users may experience from the
advanced features of SCWM.

Our current user interface only supports constraints
among windows. It seems useful to permit the addition of
“guide-line” elements and allow windows to be constrained
relative to them. The user could directly manipulate the
guidelines as well, permitting even more flexible layout.
These could, for example, be used to ensure that a window
stays in the current viewport, or stays in a specific region
of the display. Other virtual objects such as “guide-points”
may also be useful.

It would also be intriguing to investigate the possibility
of ghost-frame objects that are controlled exclusively by
SCWM. These window frames could then hold real appli-
cation windows by dragging them into the frame. This fea-
ture would permit hierarchically organizing windows, while
still allowing full access to the constraint solver for non-
hierarchical relationships.

One of the more interesting complexities of the declara-
tive specification using our current interface is in discerning
the user’s true intention. This is especially challenging in the

presence of windows appearing and disappearing dynami-
cally. Consider a user who is manipulating three windows,
A, B, andC. Suppose the user constrainsA to be to the
left of B, andB to the left ofC. Now suppose the applica-
tion displaying in windowB terminates, thus removing that
window. Should windowA still be constrained to be to the
left of windowC? In other words, should the transitive con-
straint that was implicit through windowB be preserved?
The answer depends on the user’s underlying desire. Pro-
viding higher-level abstractions for commonly-desired sit-
uations may alleviate this ambiguity. For example, if the
user had pressed a button to keep three windows horizon-
tally non-overlapping in a row, it is clear that windowB’s
disappearance should not remove the constraint that window
A remain to the left of windowC.

More work also needs to be done to permit the user to
interactively describe rules for managing windows of vari-
ous applications and for applications themselves to automat-
ically add constraints on their various related windows. This
sort of application-specific intelligence about how windows
should be laid out is best packaged with the individual ap-
plications. Thus, it would be useful to provide a framework
for X programs to hook into the window manager by inject-
ing Scheme code into SCWM to teach it how to manage its
windows.

We also want to extend the use of constraints to encom-
pass additional parts of the window manager’s functional-
ity. For example, animations are currently handled proce-
durally. It would be more consistent and flexible to de-
scribe them using constraints relating time and position of
window elements (Duisberg 1987). We are planning to in-
tegrate a local-propagation based sub-solver into our Cas-
sowary constraint solving toolkit. With access to that sub-
solver, SCWM users could also use constraints to require
windows to iconify together, to require that the title of a
window include a string representation of its location, or to
require that the color of a window change as it is raised or
lowered in the stacking (Z-axis) ordering. An open question
is how to better handle non-linear constraints, which are im-
portant for some window properties (e.g. area). Differential
manipulation may prove useful as one approach to this prob-
lem (Gleicher 1994).

Finally, we are especially interested in combining our
work with constraints and the web (Badroset al. 1999)
with this work on window layout. Web, window, and wid-
get layout are all fundamentally related and their similarities
should ideally be factored out into a unifying framework so
that advances made in any area benefit all kinds of flexible,
dynamic two-dimensional layout.

Acknowledgments
We thank Maciej Stachowiak, Sam Steingold, Robert
Bihlmeyer, and Todd Larason for their contributions to the
SCWM project, and Tom LaStrange, Robert Nation, and
Charlie Hines for their work on the window managers that
provided the starting point for SCWM. We also thank Kristin
Lundquist for her graphic design advice. This research
has been funded in part by both a National Science Foun-
dation Graduate Research Fellowship and the University

7



of Washington Computer Science and Engineering Wilma
Bradley fellowship for Greg Badros, and in part by NSF
Grant No. IIS-9975990.

References
Badros, G. J., and Borning, A. 1998. The Cassowary lin-
ear arithmetic constraint solving algorithm: Interface and imple-
mentation. Technical Report UW-CSE-98-06-04, University of
Washington, Seattle, Washington. http://www.cs.washington.edu/
research/constraints/cassowary/cassowary-tr.pdf.

Badros, G. J., and Stachowiak, M. 1999. Scwm—The Scheme
Constraints Window Manager. Web page. http://scwm.mit.edu/
scwm.

Badros, G. J.; Borning, A.; Marriott, K.; and Stuckey, P. 1999.
Constraint cascading style sheets for the web. InProceedings of
the 1999 ACM Conference on User Interface Software and Tech-
nology.

Badros, G. J.; Nichols, J.; and Borning, A. 2000a. A con-
straint interface for managing windows. Short paper submit-
ted for publication. http://www.cs.washington.edu/homes/gjb/
papers/scwm-chi-2000.pdf.

Badros, G. J.; Nichols, J.; and Borning, A. 2000b. SCWM—
an extensible constraint-enabled window manager. Submit-
ted for publication. http://www.cs.washington.edu/homes/gjb/
papers/scwm-usenix2000.pdf.

Bier, E. A., and Stone, M. C. 1986. Snap-dragging. InProceed-
ings of SIGGRAPH 1986.

Borning, A. 1979.ThingLab—A Constraint-Oriented Simulation
Laboratory. Ph.D. Dissertation, Stanford University. A revised
version is published as Xerox Palo Alto Research Center Report
SSL-79-3 (July 1979).

Chang, B.-W., and Ungar, D. 1993. Animation: From cartoons
to the user interface. InProceedings of the 1993 ACM Confer-
ence on User Interface Software and Technology, 45–55. Atlanta,
Georgia: User Interface Software and Technology.

Chok, S. S., and Marriott, K. 1998. Automatic construction of
intelligent diagram editors. InProceedings of UIST 1998.

Clinger, W., and Rees, J. 1991.Revised 4 Report on the Algorith-
mic Language Scheme.

Duisberg, R. A. 1987. Animation using temporal constraints: An
overview of the Animus system.Human-Computer Interaction
3:275–307.

FSF. 1999. Guile—The GNU Ubiquitous Intelligent Language
for Extension. Web page. http://www.gnu.org/software/guile/
guile.html.

fvwm. 1999. The f? virtual window manager. Web page. http:
//www.fvwm.org.

Gleicher, M. 1992. Integrating constraints and direct manipula-
tion. InProceeding 1992 Symposium on Interactive 3D, 171–174.

Gleicher, M. L. 1994.A Differential Approach to Graphical In-
teraction. Ph.D. Dissertation, Carnegie Mellon University, Pitts-
burgh, PA. CMU-CS-94-217.

Gosling, J., and Rosenthal, D. 1986. A window manager for
bitmapped displays and unix. InMethodology of Window Man-
agement. Heidelberg, Germany: Springer Verlag. chapter 13,
115–128.

Gosling, J. 1986. SunDew – a distributed and extensible window
system. InMethodology of Window Management. Heidelberg,
Germany: Springer Verlag. chapter 5, 47–57.

Harper, J. 1999. Sawmill. Web page. http://www.dcs.warwick.
ac.uk/∼john/sw/sawmill.

Helm, R.; Huynh, T.; Marriott, K.; and Vlissides, J. 1995.
An Object-Oriented Architecture for Constraint-Based Graphical
Editing. Springer. chapter 14, 217–238.

Heydon, A., and Nelson, G. 1994. The Juno-2 constraint-based
drawing editor. Technical Report 131a, Digital Systems Research
Center, Palo Alto, California.

Kandogan, E., and Shneiderman, B. 1996. Elastic windows:
Improved spatial layout and rapid multiple window operations.
Web page. http://www.cs.umd.edu/users/kandogan/papers/avi96/
paper4.html.

Kandogan, E., and Shneiderman, B. 1997. Elastic windows:
Evaluation of multi-window operations.CHI 1997 Proceedings.

Manasse, M. S., and Nelson, G. 1991.Trestle Reference Manual.
Digital Systems Research Center. http://gatekeeper.dec.com/pub/
DEC/SRC/research-reports/abstracts/src-rr-068.html.

Marriott, K.; Chok, S. S.; and Finlay, A. 1998. A tableau based
constraint solving toolkit for interactive graphical applications.
In International Conference on Principles and Practice of Con-
straint Programming.

Myers, B. A.; Giuse, D.; Dannenberg, R. B.; Vander Zanden, B.;
Kosbie, D. S.; Marchal, P.; Pervin, E.; Mickish, A.; and Koloje-
jchick, J. A. 1990. The Garnet toolkit reference manuals: Support
for highly-interactive graphical user interfaces in Lisp. Technical
Report CMU-CS-90-117, Computer Science Dept, Carnegie Mel-
lon University.

Myers, B. A.; McDaniel, R. G.; Miller, R. C.; Ferrency, A. S.;
Faulring, A.; Kyle, B. D.; Mickish, A.; Klimovitski, A.; and
Doane, P. 1997. The Amulet environment: New models for ef-
fective user interface software development.IEEE Transactions
on Software Engineering23(6):347–365.

Myers, B. A. 1984. The user interface for Sapphire.IEEE Com-
puter Graphics and Applications4(12):13–23.

Myers, B. 1986. Issues in window management design and imple-
mentation. InMethodology of Window Management. Heidelberg,
Germany: Springer Verlag. chapter 6, 59–71.

Myers, B. A. 1988. A taxonomy of user interfaces for window
managers.IEEE Computer Graphics and Applications8(5):65–
84.

Nahaboo, C. 1995. GWM—the generic window manager. Web
page. http://www.inria.fr/koala/gwm.

Nelson, G. 1985. Juno, a constraint-based graphics system. In
Proceedings of SIGGRAPH 1985.

Nye, A. 1992.Xlib Programming Manual. Sebastopol, Califor-
nia: O’Reilly & Associates, Inc.

Ousterhout, J. 1998. Scripting: Higher level programming for the
21st century.IEEE Computer.

Rosenthal, D. 1994.Inter-client Communications Convention
Manual, version 2.0 edition. http://www.talisman.org/icccm.

Schneiderman, B. 1983. Direct manipulation: A step beyond
programming languages.IEEE Computer16(8):57–69.

Stallman, R. M. 1981. EMACS: The extensible, customizable
display editor. Technical Report 519a, Massachusetts Institute of
Technology Artificial Intelligence Laboratory. http://www.gnu.
org/software/emacs/emacs-paper.html.

Sutherland, I. 1963.Sketchpad: A Man-Machine Graphical Com-
munication System. Ph.D. Dissertation, Department of Electrical
Engineering, MIT.

8


