
Playbook: Revision Control and Comparison for
Interactive Mockups

Stephen Oney1, John Barton2, Brad Myers1, Tessa Lau2, Jeffrey Nichols2

.

 Abstract. When designing interactive interfaces and behaviors, interface de-
signers compare and contrast multiple design ideas, often creating and testing
many intermediate user interface prototypes before deciding on a final design.
However, existing interface prototyping and creation tools do not effectively
let designers explore, compare, or keep track of older versions of interface
mockups, implicitly making the assumption that the users of these tools will
work with one design alternative at a time. To explore how to enable design-
ers to work with multiple designs in a prototyping tool, we created Playbook,
a new system oriented towards helping interface designers keep track of,
compare, and create interactive mockups. In this paper, we describe Playbook
and discuss ways that future prototyping tools can better support the workflow
of designers.

Keywords: prototyping, mockups, interface design, versioning

1 Introduction

In the intermediate stages of interface design, designers typically produce a large
number of design artifacts: site maps, story boards, static mock-ups, interactive
prototypes, etc. [1]. Although a number of surveys and empirical evidence have
shown that designers need better tools to manage and evaluate these design artifacts
[1][2][3], designers are still using ad-hoc versioning solutions, like manually renam-
ing files [1][4]. This may be for two reasons: first, revision control systems do not
effectively fit in with interface designers’ workflows or the tools they most frequent-
ly use for creating mockups. Second, while methods for keeping track of and com-
paring static artifacts, like site maps, are relatively straightforward, there are no
appropriate methods for keeping track of interactive artifacts, like interactive
mockups, and this presents a significant research challenge.

Interactive artifacts are ill suited for tracking with traditional revision control
methods because they are defined by both their appearance and behavior. Although
many imperative languages conflate the two, interface designers should ideally be
able to define and modify each independently. Having separate revision control
repositories for appearance and behavior is not practical because the two aspects are
interdependent. Particular revisions of the interface behavior are only compatible

1 Carnegie Mellon University
5000 Forbes Ave. Pittsburgh, PA 15213

{soney, bam}@cs.cmu.edu

2 IBM Almaden Research Center
650 Harry Rd. San Jose, CA 95120

{bartonjj, tessalau, jwnichols}@us.ibm.com

with a subset of the versions of the interface appearance because, for example, the
code for the behavior will be dependent on the presence of specific interface ele-
ments in the appearance. Thus, a revision control system for interactive prototypes
should be able to keep track of not only revisions of appearances and behaviors, but
also compatibility between the two.

 In addition to keeping track of revisions, a revision control system should enable
comparisons to be made across different revisions. For static artifacts, this is largely
a solved problem, as evidenced by the large number of textual and image-based
difference systems. For interactive artifacts, however, comparisons between
mockups are more difficult to make in a meaningful way, beyond changes in ap-
pearance, or beyond textual differences in the code responsible for the behavior.

We created Playbook to explore solutions to the aforementioned issues of revi-
sion tracking for interactive interface mockups. To manage revisions of both appear-
ance and behavior, Playbook keeps track of layered images that define the appear-
ance of the mockup and “scripts” that define the behavior of the mockup. To effec-
tively fit in with interface designers’ existing workflows and tools, Playbook allows
designers to upload layered images quickly and directly from Photoshop. To add
interactivity to these static layered images, Playbook uses a scripting language in-
spired by that of CoScripter [5], where high-level scripts describe the behaviors of a
mockup. Our scripting language describes behaviors on a sufficiently high level that
one script may be applied to mockups with very different appearances. Playbook
scripts are grouped around the specific “tasks” that they enable the user of the inter-
face to perform. For example, one task for a mockup of a movie rental website
might be “rent a movie.” Scripts grouped under this task describe how different
interactive mockups react as the user goes through the steps of renting a movie. If
the interface changes dramatically between revisions, very different scripts may be
required to describe how the interface behaves when the user is performing a task.
To allow interactive mockups to be compared, Playbook allows for mappings be-
tween these scripts within a task to define equivalent parts of different scripts, as is
shown in Figure 1. This paper demonstrates that design tools can help designers
manage and compare different revisions of interactive prototypes and presents Play-
book, a tool for creating interactive prototypes that embodies this idea.

2 Related Work

A number of tools have been created to enable the creation of interactive mockups
of various fidelities, including Adobe’s Flash Catalyst, DENIM [6], and Designer’s
Outpost [7]. However, our focus in Playbook is on how to enable revision tracking
and comparison, rather than on how the interactive behaviors are defined originally.
Playbook is only concerned with the language describing mockup behavior to the
extent that it is simple enough to be used by interface designers without a program-
ming background and allows for revision control and comparison between interac-
tive mockups.

Other systems have been built with the intention of exploring and comparing de-
signs. Cogtool [8] supports estimating expert performances on mockup user inter-

faces and displays a grid of interface designs along with their performance in doing
user-specified tasks. Whereas Cogtool allows interface designers to compare proto-
types using task completion times, Playbook allows designers compare different
prototypes more qualitatively by being able to interact with the prototypes side-by-
side. Juxtapose [9] is another system that lets designers compare different possible
designs side-by-side. However, Juxtapose only allows low-level user input events to
be replicated, such as mouse clicks at a particular (x,y) location on the screen, when
comparing different prototypes. This limits the differentiation that is permissible
when comparing interactive mockups side-by-side with Juxtapose.

3 Design

Playbook mockups start out as layered Photoshop images. Each interactive element
of the interface must be in a separate layer. When the designer has a mockup they
are happy with, the next step is to upload that mockup to the Playbook server, which
keeps track of every uploaded revision. To make this step as simple as possible, we
created a Photoshop plugin that adds a menu item to the Photoshop interface’s File
menu that does this. After the user clicks this menu item, the file is uploaded and the
user’s web browser is opened, pointing to the Playbook web page, so it operates like
a versioned save feature.

After uploading the layered Photoshop file to the Playbook server, the next step
is to create scripts to make the mockups interactive. Every script is then classified
under a “task” group, which describes, on a high level, what the scripts in that group
enable the user to do on the mockup. For example, in a mockup for a clothing web-
site, one could write a set of scripts for the task of buying a t-shirt. Every script in
that task group would describe how a user would buy a t-shirt in a particular version
of that mockup (click the ‘mens’ button, and then the menu overlay should ap-
pear…click the ‘t-shirts’ button, and a list of t-shirts should appear, etc.). These
scripts can be thought of as interaction traces through a mockup. Every script is a set
of “behaviors” which consist of one “stimulus” and any number of “responses.” A
stimulus is a user action to which the mockup will respond. For example “mouseo-
ver the ‘womens’ layer” or “click the ‘t-shirt’ layer.” Each response is a simple
reaction to a stimulus. Only two responses are currently supported: hiding and show-
ing layers. While the set of responses is limited, evidence from popular prototyping
tools such as Balsamiq shows that even with these simple responses, designers can
mock-up many of the desired behaviors that appear in web interfaces.

When writing a script for the first time, every behavior is specified by the de-
signer. Designers can write these behaviors by demonstrating the stimuli on the
interface mockup, and can later go back and edit these scripts manually if necessary.
As the user demonstrates an action, the currently-selected behavior in the script
updates itself by setting its stimulus to the action the user just performed. For exam-
ple, if the user demonstrates a click on a particular layer, the currently-selected be-
havior’s stimulus is set to clicking on that layer. The stimulus options for behaviors
are: mouseover, mouseout, mousedown, mouseup, and click. Playbook does not do
any inferencing or reasoning on the stimulus-response pairs the user writes.

Every script is tied to a particular mockup (but may be used across versions of
that mockup), because it uses layers that may only be in that mockup. However, we
wanted to give the designer the ability to easily apply old scripts to new mockups.
For example, if a designer writes a script for version 1 of a mockup, and makes
some minor tweaks to the graphics between version 1 and version 2, we did not want
the designer to have to rewrite the scripts that they wrote for version 1. Thus, after
the user writes a script, Playbook automatically tries to apply the script to new ver-
sions of that mockup, and generates scripts for them. This is done by trying to repli-
cate all of the behaviors from the previous script by looking for layers with the same
name on the new version. If a behavior, or part of a behavior, refers to a layer name
that is not in the new version, Playbook omits that part of the behavior. The designer
must then verify these newly generated scripts before they can be used. As they are
verifying the script, they can make any desired changes to its content.

One of the novel features of Playbook is the interface “compare” feature, which
allows designers to compare interactive versions of their mockups by interacting
with both simultaneously. We designed the compare feature to allow mockups with
very different user interfaces to be compared. Allowing the designer to specify
which actions are ‘equivalent’ on different interfaces enables this. When designing
the compare feature, the first important design issue that needed to be addressed
was: at what granularity should designers be able to specify equivalence: complete
behaviors or individual stimuli and responses? We decided to allow designers to
specify equivalencies of stimuli and responses because it increased the flexibility of
what could be equivalent. Between interfaces, stimuli can be marked as equivalent
to other stimuli, and responses can be marked as equivalent to other responses in a
many-to-many relationship (any number of stimuli or behaviors can be marked as
equivalent to any number of stimuli or behaviors in another mockup).

Another design issue was how and when designers would view and edit the
equivalency relationships. We believe that the most natural way of visualizing
equivalency relationships is by drawing lines between equivalent stimuli and re-
sponses, as shown in the center of Figure 1.

Fig. 1. The user is mapping stimuli and responses from the script on the left to the
script on the right. Equivalent objects have a line between them. For example, a click
on the “MENS” layer in the left mockup is equivalent to a mouseover of the “MENS”
layer in the right mockup. When whole behaviors are equivalent, Playbook uses curly
braces and a single line between the behaviors to reduce clutter. The mappings be-
tween mockup stimuli and responses are used to allow the user to interact with multi-
ple interactive mockups simultaneously.

These equivalency relationships between actions can only be specified in scripts
within a task. For example, the ‘buy a t-shirt’ script in mockup version 1 can only
have equivalency mappings with the ‘buy a t-shirt’ script in mockup version 2;
mappings cannot be made across tasks. When Playbook generates a script for a new
mockup based on an old script, it automatically generates a set of equivalency rela-
tionships that can be verified, discarded, or augmented by the designer.

The equivalency connections are the basis for how Playbook allows the user to
interact with multiple prototypes at the same time. When the user performs an action
(stimulus) on one interactive mockup, Playbook then looks for the equivalent stimu-
lus on any other mockups that are running. If there is an equivalent stimulus, Play-
book simulates the stimulus on that prototype. If not, Playbook looks at the respons-
es for the original stimulus. For every response, Playbook looks for equivalent re-
sponses in the other mockup, and simulates the stimulus responsible for that re-
sponse. If the layer responsible for that stimulus on the equivalent prototype is not
visible, Playbook still executes the stimulus, giving the designer a warning.

One of the benefits of Playbook being a web platform is that it enables multiple
people to easily share the interactive prototypes. Playbook provides menu items to
allow users to download a previous mockup as a Photoshop file, make changes to
the mockup through Photoshop, and re-upload it to the Playbook server as a new
version. Further, Playbook generates small HTML snippets that allow these interac-
tive mockups to be easily embedded into other webpages. One could, for example,
embed an interactive mockup into a wiki page that describes the interface and use
the interactive mockup as a working example.

4 Implementation

Because it is a web-based interface, Playbook was implemented almost entirely in
JavaScript. Using Photoshop’s built-in JavaScript plugin capability, we added an
“Upload to Playbook server” menu item to the Photoshop File Menu. On the Play-
book server, the Photoshop file is processed, splitting the layers into separate image
files. The Playbook server runs a copy of Photoshop and uses another Photoshop
script to create the web version of the layer image so it can be used by the mockup.

The Playbook server stores all of the information it contains about each mockup,
layer, script, etc. in a database. Playbook’s web interface, in turn, periodically up-
dates itself by querying the database. This allows users to stay updated if other team
members are using the Playbook interface at the same time. The web interface also
periodically saves any changes that are made to scripts back to the database, so that
the users’ scripts will still be on the server after they leave the page.

5 Conclusion & Future Work

This paper presented Playbook, a system that allows designers to maintain and com-
pare multiple revisions of interactive prototypes. Playbook is a proof-of-concept that
shows that it is feasible to enable revision control and comparison of interactive

mockups while working with the tools that interface designers currently use. We
believe that many of the ideas behind Playbook can be used to augment future proto-
typing tools, including giving designers the ability to keep track of old designs and
design alternatives, and allowing designers to compare prototypes. For future re-
search, we plan to explore alternative ways to highlight differences between interac-
tive mockups, expand the range of what can be prototyped using our scripting lan-
guage without raising the floor of knowledge required, and explore ways to use
Playbook as a “boundary object” to improve communication between designers and
developers.

Finally, while Playbook is a system especially for interface designers, we also
plan on exploring ways of applying some of the principles behind Playbook to de-
velopment and prototyping systems for End User Development. To the extent that
these systems permit separation of concerns between appearance and behaviors,
augmenting them with some of Playbook’s features may enable end users to better
explore their design space and create more thoroughly designed artifacts

Acknowledgments. We thank our collaborators at IBM and the conference organiz-
ers and reviewers for their helpful advice. In addition, we thank the ARCS and Ford
foundations for their generous support. This research was also partially supported by
the National Science Foundation under grants IIS-0757511 and CCF-0811610.

References

1. Ozenc, F.K., Kim, M., Zimmerman, J., Oney, S., Myers, B.: How to support designers in
getting hold of the immaterial material of software. ACM CHI Conf. pp. 2513-2522,
(2010).

2. Grigoreanu, V., Fernandez, R., Inkpen, K., Robertson, G.: What designers want: Needs of
interactive application designers. IEEE VL/HCC. pp. 139-146 (2009).

3. Newman, M.W., Landay, J.A.: Sitemaps, storyboards, and specifications: a sketch of Web
site design practice. Proceedings of the 3rd conference on Designing interactive systems:
processes, practices, methods, and techniques (DIS). pp. 263-274 (2000).

4. Carter, A., Hundhausen, C.: How is User Interface Prototyping Really Done in Practice? A
Survey of User Interface Designers. IEEE VL/HCC, pp. 207-211 (2010).

5. Leshed, G., Haber, E.M., Matthews, T., Lau, T.: CoScripter: automating & sharing how-to
knowledge in the enterprise. ACM CHI Conf. pp. 1719-1728 (2008).

6. Lin, J., Thomsen, M., Landay, J.: A visual language for sketching large and complex inter-
active designs. ACM CHI Conf. pp. 307-314 (2002).

7. Klemmer, S.R., Newman, M.W., Farrell, R., Bilezikjian, M., Landay, J.A.: The designers'
outpost: a tangible interface for collaborative web site. ACM Symposium on User Interface
Software and Technology (UIST). pp. 1-10 (2001).

8. Hudson, S., John, B., Knudsen, K., Byrne, M.: A tool for creating predictive performance
models from user interface demonstrations. ACM Symposium on User Interface Software
and Technology (UIST). pp. 93-102 (1999).

9. Hartmann, B., Yu, L., Allison, A., Yang, Y., Klemmer, S.R.: Design as exploration: creat-
ing interface alternatives through parallel authoring and runtime tuning. ACM Symposium
on User Interface Software and Technology (UIST). pp. 91-100 (2008).

