
Understanding the Challenges of Designing
and Developing Multi-Device Experiences

Tao Dong
Google Inc.

Mountain View, CA, USA
dongtao@acm.org

Elizabeth F. Churchill
Google Inc.

Mountain View, CA, USA
churchill@acm.org

Jeffrey Nichols
Google Inc.

Mountain View, CA, USA
jwnichols@google.com

ABSTRACT
As the number of computing devices available to users
continues to grow, personal computing increasingly
involves using multiple devices together. However, support
for multi-device interactions has fallen behind users’ desire
to leverage the diverse capabilities of the devices that
surround them. In this paper, we report on an interview
study of 29 designers and developers in which we
investigate the barriers to creating useful, usable, and
delightful multi-device experiences. We uncovered three
key challenges: 1) the difficulty in designing the
interactions between devices, 2) the complexity of adapting
interfaces to different platform UI standards, and 3) the lack
of tools and methods for testing multi-device user
experiences. We discuss the technological and business
factors behind these challenges and potential ways to lower
the barriers they impose.

Author Keywords
Multi-device experiences; multichanneled services;
crossmedia services; cross-device interactions; design
issues; developer experience, interviews

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous

INTRODUCTION
The ability to seamlessly connect multiple devices of
varying screen sizes and capabilities has always been an
integral part of the vision for distributed user experiences
and Ubiquitous Computing. Recent studies [7,14] have
shown that this future vision is beginning to arrive, and that
many users are now engaging with multiple devices in
parallel everyday. Use cases range from the mundane and
simple, such as checking the translation of a word in a
subtitle while watching TV, to more complex and long-
form tasks, such as following instructions on a phone for
installing and configuring software on a computer.

Unfortunately, this same research shows that these multi-
device use cases are rarely supported by software and that
users must act as the bridge connecting their devices. This
can substantially increase cognitive load for the user and
greatly increase the difficulty of even relatively simple
tasks. The lack of high quality multi-device user
experiences despite the availability of the hardware devices
that should enable them implies that there exist design and
development challenges that are not yet fully understood.
To better understand this, we chose to conduct a study to
answer two research questions:

 What barriers and challenges are there to creating
useful, usable, and delightful multi-device experiences?

 What tools and methods would be helpful to simplify
the design and development of such experiences?

Our focus is to understand what factors might be
complicating and undermining the work of the designers
and developers who are trying to bring multi-device
experiences to users. Our long-term goal is to inform the
design of tools that aid in the design and development of
such experiences.

To this end, we conducted in-depth interviews with 29
professionals who are actively designing or building multi-
device user experiences, revealing a number of common
challenges that are unique to the design and development of
such experiences. In this paper, we present the three most
critical challenges they discussed:

1. The difficulty in designing interactions between
devices

2. The complexity of adapting user interfaces to different
platform UI standards

3. The lack of tools and methods for testing multi-device
user experiences

These three challenges affect different activities in building
a multi-device experience. The first challenge complicates
the functional design of a system, while the second
challenge burdens visual and interaction design. The last
challenge can cause the implementation of the experience to
be costly and hard to manage.

Our work builds on past research (e.g., [4,11]) that has
predicted the contemporary landscape of multiple,
potentially connected devices, and forewarned of some of
the difficulties inherent in creating seamless connected

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored.

Copyright is held by the owner/author(s).
DIS 2016, June 04-08, 2016, Brisbane, QLD, Australia
ACM 978-1-4503-4031-1/16/06.
http://dx.doi.org/10.1145/2901790.2901851

Mobile DIS 2016, June 4–8, 2016, Brisbane, Australia

62

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs International 4.0 License

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

device experiences, such as maintaining UI consistency
across devices and eliciting user feedback on early
prototypes. As this multi-device computing environment
has now become a reality, it is important to again consider
these issues and identify which challenges have actually
arisen and which have turned out to be less important than
originally anticipated.

The rest of this paper is organized as follows: We first
present an overview of related work on the design of multi-
screen, multi-device experiences and the unique challenges
of designing for such products. We then describe our
research method and processes, and present detailed results
that illustrate three key challenges identified. Finally, we
discuss the technological and business factors behind these
challenges and potential ways to lower the barriers they
impose.

RELATED WORK
Our research is related to and informed by two bodies of
work: studies on multi-screen and multi-device design
principles, and studies seeking to understand the challenges
faced by designers and developers of such multi-screen and
multi-device user experiences. To contextualize these two
bodies of work, we first introduce two main types of multi-
device experiences identified in prior work. We have found
this distinction helpful in understanding different design
goals and the challenges associated with them.

Multichanneled Services and Crossmedia Services
Wäljas et al. identified two main types of multi-device
experiences: multichanneled services and crossmedia
services [19]. Though it is possible for a service to be both
multichanneled and crossmedia, we found this distinction
useful for analytical purposes.

Multichanneled services allow the user to access the same
service via different kinds of devices and platforms (i.e.,
channels) [6,18]. The features available on different devices
might differ due to input and output constraints and usage
expectations, but the core functionalities are accessible
from any of the supported devices. An example of a
multichanneled service is the music streaming service
Spotify, which offers largely the same set of features via its
Web-based player, Mac application, iOS app, and Android
app. The user’s data between these channels are
synchronized to allow the user to move between these
channels to consume the service.

Crossmedia services split functionality across different
devices according to those devices’ strengths and
affordances [19]. A commercial example of a crossmedia
service is Google Chromecast1, which allows the user to use
a mobile device or a Web browser as the remote control for
a large-screen viewing device, such as a TV. In this case,
each type of device is used for its strength, and
functionality is largely non-overlapping between them. The

1 Chromecast. https://www.google.com/chromecast

experience as a whole would not be possible without at
least one of each type of device being present and
functioning.

Multi-device Design Principles
To understand multi-device designers’ challenges, it is
important to understand the unique design requirements of
multi-device services in the first place. This will help us to
understand the gap between what designers can achieve
with the resources available and the ideal user experience
they want to provide. Multichanneled services and
crossmedia services have different design and development
considerations and thus we consider them separately.

For multichanneled services, inter-device consistency is the
most fundamental principle. Extending the conventional
concept of usability to multi-device systems, Denis and
Karsenty [3] coined the term inter-usability, which refers to
the overall ease of switching to other devices for a given
functionality. Through interviewing 10 users who used
multichanneled services such as emails, diaries, and address
books, they identified two main dimensions of inter-
usability: knowledge continuity and task continuity.
Knowledge continuity allows the user to apply her existing
knowledge about a service learned from using a previous
device to a new one, while task continuity allows the user to
easily resume the task he previously worked on when he
switches devices. Denis and Karsenty further argued that
these two types of continuities could be achieved by
implementing different levels of inter-device consistency.

The key issue for crossmedia services is the question of
how to distribute functionalities to different devices in the
system. Segerståhl [15] conducted a field study of a fitness
tracking system that consisted of a wearable activity tracker
and a Web service. Based on the results, Segerståhl argued
for the benefits of specializing different devices within the
system with different functionalities to reduce the
complexity of individual components of the system.
However, she also warned that such distribution of
functionality must match the structure of the target activity
and maintain a certain degree of flexibility and feature
redundancy (which she referred to as functional modularity)
because human activities are constantly fluctuating.

The temporal dimension of multi-device use is also helpful
in understanding the multi-device design space. In a diary
study of multi-device use, Jokela et al. [7] found that both
sequential use and parallel use of multiple devices were
practiced by users. Similarly, in the 4C framework
proposed by Sørensen et al. [16], the authors make a
distinction between sequential use and simultaneous use.
They emphasize data synchronization and migration of the
user’s activity state for sequential use and stress the
importance of making sure different devices play to their
individual strengths and complement one another for
simultaneous use.

Mobile DIS 2016, June 4–8, 2016, Brisbane, Australia

63

In search of an overarching design principle for multi-
device experiences, Wäljas et al. [19] propose the notion of
service coherence, based on insights gathered from a diary
study of 3 different multi-device services, including both
multichanneled services and crossmedia services. They
define coherence as follows: “Coherence is influenced by
composition, flow of interactions and content as well as
continuity.” In a similar vein, Kim et al. [8] argue that an
ideal multi-device experience should have “locally
optimized consistent UI & globally unified coherent UX.”
Levin offers a more holistic approach in her 3C framework
[9], which argues that consistent, continuous, and
complementary approaches should be considered as
building blocks of a multi-device ecosystem rather than
mutually exclusive paths of design.

Multi-Device Prototyping and Development Issues
Previous work has also examined the challenges inherent in
prototyping and building multi-device user experiences.

To motivate a pattern-based cross-platform design tool, Lin
[11] interviewed nine UI designers who worked on
applications targeting two or more different types of
devices, including desktop computers, PDAs, and WAP
phones. The findings from his interviews highlight the
difficulty of maintaining UI consistency across devices,
especially the consistency of menu order, terminology, and
colors and graphics. Furthermore, Lin noted the lack of
design tools specialized for handling multiple devices and
the scarcity of cross-device design patterns despite
designers considering them to be useful.

Around the same time (pre-2006), Dow et al. [4] conducted
an interview-based study with eleven designers who had
experience “designing and prototyping off-the-desktop
applications,” which included multi-device experiences but
also ubiquitous computing systems in general. They
identified three challenges, including design tools
inadequately supporting communications between different
design roles, designers lacking knowledge about the
capabilities and constraints of new hardware, and technical
difficulties in producing Ubicomp prototypes. Furthermore,
they argue for creating tools that can enable designers to
employ multiple representations, including storyboards,
diagrams, and simulations, to examine and express
application design ideas.

More recently (pre-2011), Antila and Lui [1] interviewed
seventeen professionals whose work included “components,
which are interconnected with some level of measured
usability.” Based on those interviews they identified four
challenges. First, it was difficult to address implementation
constraints imposed by specific platforms at the early stage
of a project, because the tools used by designers and the
tools used by developers lacked integration. Second, some
domains, such as healthcare, restricted deployment of
certain technologies for organizational reasons. These
restrictions can negatively affect the continuity and
consistency of cross-platform experiences. Third, it was

difficult to get user feedback on multi-device experiences
until a functional prototype can be deployed in the field due
to the lack of research frameworks and methods. Last,
targeting multiple platforms/devices was complicated
because of the tension between the assumed need for a
unified look-and-feel across devices and the inherent
differences in the capabilities and user interaction
metaphors of each device.

Our research extends this prior work in three important
ways:

1. Prior work focused mainly on the (still important)
challenge of designing UIs that are consistent across
devices that have very different input and output
capabilities (e.g., [1,11]). We found this challenge was
complicated by the additional tension between
following native UI standards imposed by platform
vendors (e.g., Google’s Material Design2 and Apple’s
Flat Design3) and maintaining consistency of design
across platforms.

2. Prior work (e.g., [1,4]) noted that practitioners have
difficulties getting useful feedback without deploying
functional prototypes in the field due to the lack of
research frameworks and analysis methods to explore a
realistic cross-section of contextually appropriate usage
scenarios. We extend this finding by unpacking the
design complexity imposed by the many, often
unanticipated ways devices can interact with one
another in a multi-device experience.

3. Prior work (e.g., [1]) focused on the difficulty of user
testing for multi-device experiences. Our work reveals
that software testing is equally difficult. Functional
testing, compatibility testing, and GUI testing are
challenging for multi-device developers and represent
an important barrier to development. Our interviews
shed light on the unique challenges of conducting these
tests in the implementation process of multi-device
experiences.

STUDY DESIGN
In order to identify challenges related to designing and
developing multi-screen and multi-device experiences, we
conducted semi-structured interviews with 29 professional
designers and developers who are currently building multi-
device experiences.

Participants
Participants were recruited from an existing database of
prospective participants maintained by our organization,
and also through mailing lists, personal referrals, online
development communities, and snowball sampling.

2 Material Design.
https://www.google.com/design/spec/material-design/
3 iOS Human Interface Guidelines: Designing for iOS.
https://developer.apple.com/library/ios/documentation/User
Experience/Conceptual/MobileHIG/

Mobile DIS 2016, June 4–8, 2016, Brisbane, Australia

64

Of our 29 participants, 16 were UX/UI designers, 11 were
software developers, and 2 were product managers. Our
participants came from 13 organizations, but about half
were affiliated with one large technology company that
offers several popular multichannel and crossmedia
products. Twenty worked on multichanneled experiences,
and 9 worked on crossmedia experiences. The dominance
of multichanneled experiences in our sample reflects the
nascent nature of crossmedia experiences in the market.

Interview Procedure
All but three of our participants were interviewed in person;
the remainder through video conferencing tools. The
interviews were semi-structured and issues were discussed
on a number of themes: the cross-device aspects of the
participant’s current and past projects; tools currently and
previously in use; preferred, prescribed and discarded
workflows; examples of adapting UIs to different platforms
and form factors; aspects of prototyping and testing
designs; within-team and cross-organization and
development function communication issues; and attitudes
towards automating certain aspects of the design process.
Each interview lasted about an hour.

All interviews were audiotaped, summarized, and partially
transcribed. Affinity diagrams were created to organize the
data and identify common and key themes. Analytic memos
on key themes were generated immediately post-interview
and iteratively during analysis to provide a foundation for
synthesizing the viewpoints of different participants.

RESEARCH FINDINGS
Our research identifies a number of challenges in designing
and developing multi-screen and multi-device user
experiences, confirming that the nature of multi-device

interactions have brought about unique problems for
designers and developers. Although a number of themes are
apparent in our data, in this paper we present the top three
challenges that have deep implications for the practice of
design and development of multichanneled and crossmedia
user experiences. Table 1 gives an overview of the
challenges identified and explored.

Designing Interactions between Devices
Some of our participants worked on features that allow
multiple devices to collaborate either in sequence or in
parallel to help the user accomplish a task. Sequential use
of multiple devices often emerges naturally when a
multichanneled service provides the ability to synchronize
data across devices, while parallel use is usually more
deliberately designed by assigning different roles to
different devices involved in an interaction. Both types of
interactions between devices bring about new design
challenges as we describe below.

Maintaining Consistent Information Architecture
From a design perspective, maintaining consistent
information architecture is critical to help users achieve task
continuity and knowledge continuity when they switch to a
different device that might have a distinct form factor or
different input and output constraints. P16, a designer
working on a travel search application said his team was
aware that some users would plan their trip across several
devices in multiple sessions, as he described:

“You might start [planning a trip] at work on desktop. You
might do more searches along the subway on your phone.
And then in the evening with your tablet.”

In order to make this kind of multi-session, multi-device
activity as cohesive as possible, P16 emphasized the

Activities Identified Challenges

Functional
Design

The difficulty in designing interactions between devices

 Maintaining consistent information architecture
 Handling task continuity with uncertain user intentions
 Designing and communicating complex conceptual models and business logic

Visual &
Interaction
Design

The complexity of adapting user interfaces to different platform UI standards

 Business biases and unrealistic design ideals
 Fuzzy boundary between platform standards and product identities
 Unclear cost of deviating from the standard
 Unverified assumptions about multi-device use

Implementation The lack of tools and methods for testing multi-device user experiences

 Too many distinct devices to test
 Inadequate emulators
 Interdependency between components running on different devices
 Difficulty of automating UI tests

Table 1. Selected Challenges Grouped by the Activities in the Design and Implementation Process

Mobile DIS 2016, June 4–8, 2016, Brisbane, Australia

65

importance of maintaining consistent information
architecture across devices. In particular, he explained:

“When you transition between devices, ‘Oh yeah! That was
the thing I was looking at before.’ So really as much as the
layout as we can keep the same and consistent I’d love to
keep it the same and consistent. But the most important
thing to me is that we use the same words to describe the
same things and the flow of information in the unit is
consistent.”

An additional challenge brought by multi-device computing
to information architecture design is that some of the most
familiar building blocks of information architecture start
losing their meanings in a multi-device world. Designer
P14 provided an example of this in an e-book app that
attempts to always open to the last page a user was reading
across different devices:

“The challenging thing is because of the different
resolutions and screen sizes of different devices... you might
have 1,000 characters here [a large-screen Android
phone]. On the iPhone, you’ll have 600 characters. So
making sure that when you open it up, you map exactly to
the right location. Page numbers don’t really mean
anything.”

Handling Task Continuity with Uncertain User Intentions
Having consistent information architecture across devices is
important to support task continuity, but that is often not
enough. Designers sometimes find themselves uncertain
about user intentions and making uninformed guesses when
they wanted to create continuous user experiences across
devices.

For instance, P23 worked on an application designed for
sales professionals that has both a mobile version and a
desktop version. The app supports two sequential use cases.
In one case, users can save sales leads on their smartphones
when they are in the field and then continue researching or
following up on these leads on their computers when they
get back to the office. In the second case, users can collect
potential sales leads on their desktop computers and then
retrieve related information before or during customer
meetings on their smartphones.

Eager to harness the potential of multi-device computing,
P23’s team initially wanted to implement a “dream”
scenario, as they referred it to, in which the mobile app
would automatically present sales leads the user saved in
the desktop version at the moment the user opens the
mobile app. They hoped that this feature would help the
user re-access saved information and provide a continuous
experience. However, it proved to be more complicated
than they thought, as P23 explained:

“Let’s say you send it but you never opened up the app and
then like three days later you opened up the app. It’s telling
you to go to this thing that’s no longer relevant.”

P23’s account reflects the difficulty to answer several
critical design questions due to the lack of tools and
frameworks for designing such cross-device experiences.
The first question they could not answer, in our view, was:
what is the user’s intention when he/she saves a sales lead
on a device? The action of saving a lead does not
necessarily imply an unfinished task that the user intends to
get back to. Though they could have requested the user to
specify his/her intention, but P23 said they worried it would
make it “a heavyweight action.” The second question was:
what is the user’s intention when he/she opens the app later
on a different device? The time elapsed between these two
sessions might provide some signal but it seemed not
enough. The last question was: how proactively the system
should help the user to get back to a saved task? Will that
reminder get in the way of another task? Without a means
to properly answer these three questions, implementing that
“dream” scenario would be “sometimes useful, sometimes
annoying [to the user],” said P23. His team ended up just
providing the user with a separate section of saved leads,
which, he admitted, did not take full advantage of the multi-
device ecosystem but was a safe option.

Designing and Communicating Complex Conceptual Models
and Business Logic
Another aspect of the challenge was related to the complex
conceptual models and business logic governing crossmedia
experiences. All apps embody business logic in that they
take users through a flow, but in a crossmedia experience,
business logic also specifies how and when a device should
respond to another. It turned out to be quite difficult for
designers to understand, inspect, and communicate how
multiple devices would work together under different
circumstances.

To designers and developers, it is particularly difficult to
grasp the application behaviors in unusual or infrequent
scenarios. Nevertheless their users may find themselves in
such scenarios–and it is well known that a single negative
experience can sour a user’s relationship with a product.
P26, who was familiar with issues in developing
Chromecast apps, said that properly handling how the
mobile client (i.e., the sender app in a typical Chromecast
experience4) disconnects from and reconnects to the
Chromecast device was one of the hardest problems for app
developers. If they were not careful about the business logic
they encoded into their apps, they might put their users in
awkward positions. He told us an example:

“If you don’t get it right, then you leave for the day, your
kids watching whatever when they come home from school.
You come home. Your device sees that network and
reconnects to the network, and then reconnects that app [to

4 Chrome Sender App Development.
https://developers.google.com/cast/docs/chrome_sender

Mobile DIS 2016, June 4–8, 2016, Brisbane, Australia

66

Chromecast] potentially. And you blow away what someone
else is watching.”

In this particular case, it would be easy to attribute the fault
to the developer who made its app overly aggressive on
reconnecting itself to the Chromecast device. But there are
two issues inherent to designing crossmedia experiences.
The first issue was the inability to determine the user’s
intention when they get disconnected from one of the
devices involved in the experience. The father in this
example made a so-called “implicit disconnect” by going
out of the range of the WiFi network. It was unclear to the
mobile client whether he wanted to reconnect to the
Chromecast later or wanted to end the experience. The
second issue was that it could be onerous for the product
designer to walk through all the edge cases to understand
the implications of the business logic he/she designed for
the application. The challenge of designing sound business
logic for applications involved in a crossmedia experience
was crystallized in the analogy P10 made:

“When you think about design involving all these devices,
it’s a conversation...How do you ping those things in a way
that it’s an ongoing conversation, and they speak to one
another in a synced way and in a logical way?”

Designing business logic for crossmedia experiences is
hard, as is communicating that logic. One example is the
Smart Lock5 technology shipped with newer Android
devices and Chromebooks. One of the features offered by
the technology is to automatically unlock a device based on
its proximity with another device that belongs to the same
user and is currently unlocked. For example, when your
phone is near your Chromebook and your phone has been
unlocked, Smart Lock will automatically unlock your
Chromebook. P10, a designer who were familiar with the
technology, told us some users found it difficult to
understand how it worked and its security implications:

“We need to do a better job at explaining to people the
overall mental model. I think this idea of unlock phone and
the unlocked phone represents you and your phone and it
lets us know that you’re there… Also just understanding
what unlocks what and how the system works.”

To summarize, participants identified three main reasons
why anticipating and designing multi-device interactions
could be challenging. First, the information architecture
needs to be consistent across different form factors of
devices to support task continuity. Second, it is hard to
provide explicit support for task continuity across devices,
because the user’s intention is often unclear. Third, as
devices start to collaborate in a variety of ways and under
many different circumstances, it is hard for the designer to
anticipate all the edge cases and design application
behaviors appropriate for them.

5 Google Smart Lock. https://get.google.com/smartlock/

Adapting User Interfaces to Platform UI Standards
Multichanneled experiences need to be accessible from
different computing platforms, which often have distinct UI
standards and design languages imposed by the platform’s
vendor, e.g., Apple’s Flat Design, Google’s Material
Design, and Microsoft’s metro-style UI. Though these UI
standards are useful for platform vendors to enforce a
coherent user experience within their respective device
ecosystems, they also have become a source of contention,
as multichanneled experiences often need to simultaneously
pursue two different kinds of consistencies. For example, an
application is expected to be consistent with the UI standard
of the platform it runs on. Furthermore, an application is
expected to be consistent with its sibling applications on
other platforms. How should the designer accommodate the
differences between UI standards while maintaining the
consistency between different channels of the same service?

Based on our interviews, many experienced designers have
taken a pragmatic approach to address this question. For
example P10 expressed such a view as follows:

“The native guidelines need to be respected, but there is
still a lot of room for freedom and creativity within your
specific product.”

This appears to be a sensible way to strike a balance
between the potentially conflicting requirements of
platform standards and product identities. However, a
closer look at our interview data reveals that achieving that
balance involves a tremendous amount of work to defend
design decisions against business biases, refrain from
pursuing unrealistic design ideals, and clarify ambiguities
between platform standards and product identity. In
addition, this approach is also loaded with risky
assumptions about how users may cross ecosystem
boundaries. We address each of those issues below.

Business Biases and Unrealistic Design Ideals
Though none of the designers we interviewed believed that
every aspect of UI design should or can be consistent
between platforms, some of their business stakeholders
apparently did. For example, P07 lamented that business
stakeholders often prefer consistency across platforms
without understanding the reasons that differences may be
necessary. He said:

“Way too often they [the stakeholders] are asking wrong
questions. They’re usually asking, ‘why are they not the
same’ instead of ‘why are they different?’ Because usually
there is a reason to be different.”

To pursue such design ideals can lead to a compromised
user experience. For instance, P13 said:

“We were very resistant to [UI differences between apps]
at the beginning. We thought, well because on one screen
you scroll this list horizontally, then on the Web you should
scroll horizontally as well. We tried for months to make that
work until we said no one wants to scroll horizontally on

Mobile DIS 2016, June 4–8, 2016, Brisbane, Australia

67

the Web...We can’t stick to a rule that compromises the
quality and the experience for the user.”

Fuzzy Boundary between Platform Standards and Product
Identities
As stated above, many designers wanted to follow the UI
standard of the platform but they also wanted to maintain
the consistency of those aspects of the design that defined
the character of their products across platforms. However,
there was little consensus nor any deep rationale for what
needed to be consistent across platforms.

When we asked about consistency choices, some
participants made reference to very abstract motivations
and concepts. For example, P09 talked about keeping the
“spirit” of the product consistent across platforms while not
worrying about specific UI elements. What “spirit” is was
not defined, but his strategy was to stick to a set of design
principles for the particular product. Similarly, P10 argued
that consistency across platforms should apply to the
differentiating factors in your product. P02 and P16 were
more specific about visual design and information
architecture, respectively, but their answers seemed highly
dependent on the project they were thinking about at the
time. For instance, P16’s emphasis on information
architecture was related to a travel planning application that
allows multi-session and multi-device searches.

Unclear Cost of Deviating from the Standard
Though our participants generally were able to find ways to
accommodate both platform UI standards and product-
specific designs, they did occasionally run into conflicts, in
which they found little guidance to help them properly
evaluate the tradeoff. For example, P12 described a
situation where the brand font of their product, a shopping
app, was different from the system font of Android. They
ended up giving up the brand font to make the UI look
closer to other native apps, because the team believed that
Android users would leave negative reviews if they saw a
non-standard font. However, he was never sure whether that
was the right decision:

“We respected the font for Android. We used Roboto. I
might be wrong… On one hand, you are alienating your
brand. On the other hand, you are alienating your users.”

Unverified Assumptions about Multi-Device Use
Throughout our interviews, we found that the perceived
importance of respecting native UI standards among many
designers might be based on unverified assumptions about
how users use multiple devices in the real world. Relying on
such assumptions can be especially risky in the fast-changing
area of multi-device interaction design.

Some participants provided seemingly contradictory accounts
about the assumptions guiding their design decisions. For
example, P14 initially said she believed that users rarely
cross ecosystem boundaries (e.g., an iOS user will rarely use
Android devices, and vice versa). Following this conviction,
she said,

“It’s just a guiding principle I think [that] we don’t violate
the OS native experiences.”

However, she was also aware of the possibility of users
sharing devices that have different platforms in a household,
as she later said:

“And also if you’re in a family, you guys are sharing the
same library, you may not necessarily have the same OS or
device.”

The problem was that neither assumption had been validated
through user research. Leaving such design decisions to
intuition and guesswork is problematic when between-
platform consistency can sometimes conflict with within-
platform consistency.

To summarize, designers often find themselves managing a
delicate balance between respecting platform UI standards
and maintaining the identity and coherence of the product
across platforms. Their practice is complicated and
undermined by the lack of information and methods to assess
tradeoffs between different kinds of consistency.

Testing Multi-device User Experiences
Testing multi-device experiences is much more complex than
testing single-device experiences. Our participants reported a
number of issues, including too many distinct devices,
inadequate emulators, interdependency between components
running on different devices, and the difficulty of automating
UI tests in cross-device systems.

Too Many Distinct Devices to Test
Since the original iPhone launched in 2007, mobile device
models have proliferated. According to a report [5], there
were 24,000 distinct models of Android smartphones
worldwide in 2015. It is infeasible for developers to
sufficiently test their applications to cover all the possible
devices in use.

A common strategy to deal with this explosion of devices is
to test with a handful of representative devices from each
category of form factor, and then test with a few known
“trouble makers.” For example, P18 said:

“Everyone has a small device, a medium-sized device, and a
tablet. We also have a lot of other tablets to pass around…
We use some little devices that are particularly known
crashers.”

Some modifications made by device vendors add to the
burden of testing. For instance, P18 told us:

“They [a large technology manufacturer] were using the
classic browser on Jelly Bean, even though Jelly Bean was
supposed to use the Chrome-based browser.”

One of the consequences of having to test on many real
devices is that UI design issues are often discovered late in
the development process. Designer P14 told us that on-device
testing was usually done during the coding process and
sometimes as late as in the QA stage. She said:

Mobile DIS 2016, June 4–8, 2016, Brisbane, Australia

68

“Engineers can’t catch everything for every device, then QA
test and say, ‘this is not working on this device,’ and they’ll
take screenshots and file bugs.”

Unable to discover design flaws on certain devices early on
can lead to difficult decisions and compromises on user
experience. For example, P14 said:

“What really is a bummer is that we have to make a design
compromise, because it’s not gonna work on this one set of
devices. So it looks crappy on 40% of devices, because we
have to fix for the other devices. Then I looked at our metrics,
and say, ‘Okay. Well, you know people using that on this OS
and on that device is less than a greater N, and then I just
have to make a call.”

For smaller app makers, the problem is likely to be more
acute, since they often cannot afford buying many different
devices or hiring dedicated QA engineers.

Inadequate Emulators
Emulators are supposed to help developers examine their
apps when the target physical devices are not available, but
the developers we interviewed rarely used emulators. The
main reason was that they were too slow to be useful.
Emulator makers are fully aware of this and they have started
making dramatic improvements to the speed of emulators
[17].While a faster emulator is certainly helpful for many
developers, it does not solve the problem for those who need
to access low-level hardware features for inter-device
communication and data transmission.

We learned of one such problem from P20, an engineer who
worked on a system that uses Bluetooth and other radio
technologies to transmit data from one device directly to
another. He and his colleagues had to test with more than 120
different devices to make sure that their system would work
well, because different devices often implement radio
technologies differently. His team could not simply test their
system on emulators because:

“All they [the emulators] will be doing is forking out to
whatever Bluetooth stack was installed on your desktop. For
that, you are not testing what actually gonna happen on the
phone, you’re just testing some arbitrary Bluetooth stack.
Maybe it works great, [but] that still doesn’t tell you
anything about the devices. Maybe it doesn’t work great, but
your debugging problem might not exist in the real world. So
it’s a problem. The emulator doesn’t emulate hardware.
[emphasis ours]”

The key deficiency of emulators, as P20 pointed out, is that
they are designed to mimic the software environments of
mobile devices rather than different devices’ hardware
properties and features. Thus, they are often not helpful for
testing direct device-to-device communications, which are
highly dependent on the compatibility and performance of
the hardware.

Interdependency between Components Running on Different
Devices
Another factor that makes testing crossmedia experiences
challenging is the interdependency between software
components running on different devices. How to test each
component independent of the others is an important
productivity question for developers who are building these
components in parallel. Being in this situation when his
company was developing a Chromecast app, P27’s solution
was to create a dummy sender application to pass fake
custom messages to invoke test cases of the receiver app (the
software component running on the Chromecast device that
renders content on the TV). He said:

“It’s extremely challenging when you’re developing the
mobile apps, and you have a developer developing the
receiver app, and they’re not far enough along to do some of
the testing. You need that sort of mock workflow...to work
through scenarios when the mobile apps were not even done
yet.”

Similarly, P29 also created a dummy sender app to test his
receiver app.

Difficulty of Automating UI Tests
Also related to the distributed nature of crossmedia
experiences, some participants found it difficult to automate
UI tests that require triggering events on different devices in
a coordinated manner. P26 expressed his concern about this
issue:

“It basically is manual testing, which is really time-
consuming, really hard to do consistently.”

The challenge of testing was often brought by the increased
physicality of multi-device experiences. For example, one
manual test case we learned from P26 requires the tester to
have 2 or more Chromecast units set and available, and then
tap the Cast icon in the sender application running on a
smartphone. The test case further stipulates that the expected
results should be two or more Chromecast device names
appearing on a list. As this test case shows, to successfully
execute such a simple test requires manual manipulations of
physical devices by the tester.

Developers would want to reduce their reliance on physical
manipulations of devices in tests. Here is an extreme but
illustrative example:

“We would do silly things like wrap the Chromecast in tinfoil
to trigger disconnect. You know, things like that. If there
were tools available that allow you to manually trigger
things like that, it would’ve been beneficial.” (P27)

To summarize, testing multi-device experiences is often
inadequate, inefficient, and inconsistent for four main
reasons:

1. Many software and hardware differences between
devices cause applications to appear and function
differently.

Mobile DIS 2016, June 4–8, 2016, Brisbane, Australia

69

2. Emulators are not very useful because of their
performance limitations and their inability to simulate
low-level hardware stacks critical to inter-device
communication.

3. The interdependency of devices in a crossmedia service
makes it hard to test each component independently
when the components are being developed in parallel
and potentially by different teams.

4. UI tests are difficult to automate due to the need to
physically manipulate devices in many test cases.

DISCUSSION
In this section, we discuss the contributions of our research,
two change-drivers behind the three key challenges we
identified, and the implications for supporting designers and
developers of multi-device experiences.

Research Contributions
Through interviewing designers and developers who are
creating multi-device user experiences, we have identified a
number of challenges for design and development. These
challenges were either not addressed or under-examined in
past research. For example, past studies has reported the issue
of adapting UIs to devices with differing input and output
constraints, but they do not address the impact of platform UI
standards. Our research shows that expecting designers to
make the UI consistent across platforms and simultaneously
follow the native UI standard of each target platform has
posed both usability and organizational challenges to
designing quality multi-device experiences, raising questions
such as:

 How often do users cross platform boundaries?
 Will users tolerate a design that deviates from the

platform conventions in order to optimize for cross-
platform consistency?

 What aspects of cross-platform consistency are users like
to find most important?

Moreover, we have showed that designing sound business
logic governing how devices interact with one another is
extremely difficult due to uncertain user intentions and the
lack of frameworks and tools to allow designers to foresee
disruptive scenarios. This complexity for designers has not
been revealed and detailed in prior work as far as we know.

In addition, our interviews have shown that testing multi-
device experiences is often an onerous effort. Researchers
previously warned that user testing a multi-device experience
could be difficult [1]; our research reveals that this challenge
goes beyond user testing but includes several important types
of software testing such as functional tests, compatibility
tests, and GUI tests.

Change-Drivers Behind the Challenges
We believe the three challenges we identified reflect two
broader changes in the technological landscape, which we
discuss below.

The Complexity Introduced by Collaborations between
Devices
Research has shown that users want their devices to
collaborate with one another [7,14], and our interviews reveal
that some designers and developers have started
experimenting with features that involve sequential or
parallel uses of multiple devices. These new types of
interactions have brought additional complexity that
designers and developers struggle to understand and address.
There are several dimensions of this complexity. First, a
device’s action often depends on the properties and states of
other devices. Second, devices in a multi-device system often
initiate actions with one another on behalf of the user, as in
the case of the Smart Lock technology. Last, designers often
need to design for task continuity under a great amount of
uncertainty about the user’s state and intention. To their
disappointment, the design tools and frameworks they use
today are not well equipped to address such uncertainty in
multi-device experience design.

The Continued Diversification and Standardization of the
Device Ecosystems
Paradoxically, the device ecosystems appear to be
undergoing both diversification and standardization at the
same time. As a result, multi-device designers and developers
are caught between these two parallel processes.

On the one hand, there are strong technological and business
factors driving the trend towards diversification. The barrier
to entering hardware design and manufacturing has been
drastically lowered over the past few years due to the rise of
the maker movement, crowd funding platforms, and the open
manufacturing paradigm started in Southern China [10]. As
more hardware vendors join the competition, they all want to
differentiate their devices from others by adding unique
features such as Apple’s 3D Touch6, Amazon’s Dynamic
Perspective7, and YotaPhone’s dual displays8, not to mention
numerous vendor customizations to the Android operating
system. The second driving force is the aging of mobile
ecosystems, which has already led to co-existence of many
old models and new models that have very different
capabilities and designs. Supporting both new and old
devices is hard but often necessary to retain market share.
The last driving force is the likely rise of modular phones
being developed by efforts such as Google’s Project Ara9.
When such technologies become commercially viable, there
will be a new wave of device customization driven by
consumers and makers.

On the other hand, the OS makers have relentlessly pursued
an eco-system strategy that seeks to deliver unified

6 3D Touch. http://www.apple.com/iphone-6s/3d-touch/
7 How 'Dynamic Perspective' Brings 3D to the Amazon Fire
Phone. http://mashable.com/2014/06/18/amazon-fire-
phone-3d-dynamic-perspective/
8 YotaPhone. https://yotaphone.com/us-en/
9 Project Ara. http://www.projectara.com/

Mobile DIS 2016, June 4–8, 2016, Brisbane, Australia

70

experiences across the products within their respective
ecosystems. Standardization of UI design has been an
important part of that strategy. Our data suggest that this
trend complicates multi-device design and development in
several ways. First, it might create a perception among
designers that users have become less tolerant of UI designs
that deviate from the platform standard they are accustomed
to. Second, as a substantial part of the application needs to be
designed specifically for each target platform, synchronizing
changes across platforms become an onerous effort. Last, it is
likely to become harder to design experiences that are not
only cross-device but also cross-ecosystem, since
standardization within ecosystems often means
diversification between them.

Key Implication: Better Multi-Device Simulation
Based on our data and analysis, we believe that the ability to
simulate multi-device interactions at early stages of the
design and development process is key to addressing
challenges related to both designing and testing those
interactions.

Not only should such a simulator be able to emulate
properties and traits of individual devices, it also needs to
incorporate other factors crucial to producing an accurate
preview of the multi-device experience being designed.
These factors include but are not limited to data flows
between devices, timing of actions, usage contexts,
performance of the devices and the infrastructure, availability
of the devices, and their security settings. Such simulations
can help designers better anticipate the behaviors of the
application, shorten the feedback loop, and quickly iterate the
design. Furthermore, those simulations may also help
designers better communicate their design ideas to
stakeholders including users and get their feedback earlier in
the design process. An additional use of simulation is in
testing. It can potentially reduce the need for physical
manipulations of devices and paves a road to more automated
cross-device tests.

Some research prototyping systems, such as the Weave IDE
[2] and XDStudio [12], provide features to preview multi-
device interactions within their respective design and
prototyping environments. Unfortunately, they lack the
ability to simulate usage scenarios with authentic data and
contexts. We suggest tool developers and researchers
consider adopting the “capture and replay” approach
proposed by Newman et al. [13], who developed a tool called
Replay to support the design and testing of location-based
services. Replay allows the developer to playback episodes
of GPS traces captured from real users’ mobile phones to
examine the behaviors of their applications. There are many
ways this approach might be adapted to multi-device
development. For example, traces of a device’s presence in
specific environments might be captured and made available
in a tool to allow designers to more easily explore real-world
scenarios.

Future Work
In addition to building simulation tools for multi-device
experiences, it is critical to update and deepen our
understanding about how people use multiple devices in a
variety of settings, especially as support for such experiences
gradually enhances over the time. Based on what we have
learned from our interviews, we suggest future work explore
two particularly important questions:

1. When do users cross platform boundaries,
especially within the same task? How their
experiences might be affected by the differences
between platform UI standards?

2. How do social dynamics, device ownership, and
timing play a role in shared crossmedia
experiences? For example, should a Chromecast
device treat all clients equally or prioritize
connecting requests from certain members of the
household?

It is also important to keep track of emerging tools and
practices adopted by designers and developers. As tools and
toolkits for developing multi-device experiences become
more mature and available, there is an opportunity to gain
insights from conducting surveys and analyzing online
discussions about multi-device design and development.

CONCLUSION
Support for multi-device interactions has fallen behind users’
increasing desire to leverage the diverse capabilities of the
devices that surround them. Through interviewing 29
practitioners working in this area, we identified three key
challenges that have prevented designers and developers
from building usable multi-device systems despite of
growing user demand. In particular, our work highlights the
following challenges that have not been extensively
examined before:

 The difficulty in designing interactions between devices
 The complexity of adapting user interfaces to different

platform UI standards
 The lack of tools and methods for testing multi-device

user experiences

Based on these findings, we suggest further research into
simulations of multi-device experiences as a way to lower the
barrier to designing and developing truly useful, usable, and
enjoyable multi-device experiences.

ACKNOWLEDGMENTS
We thank our participants and our colleagues for their help
with the study.

REFERENCES
1. Ville Antila and Alfred Lui. 2011. Challenges in

Designing Inter-usable Systems. In Human-Computer
Interaction – INTERACT 2011, Pedro Campos,
Nicholas Graham, Joaquim Jorge, Nuno Nunes, Philippe
Palanque and Marco Winckler (eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 396–403. Retrieved

Mobile DIS 2016, June 4–8, 2016, Brisbane, Australia

71

September 20, 2015 from
http://link.springer.com/10.1007/978-3-642-23774-4_33

2. Pei-Yu (Peggy) Chi and Yang Li. 2015. Weave:
Scripting Cross-Device Wearable Interaction.
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, ACM, 3923–
3932. http://doi.org/10.1145/2702123.2702451

3. Charles Denis and Laurent Karsenty. 2003. Inter-
Usability of Multi-Device Systems – A Conceptual
Framework. In Multiple User Interfaces, Ahmed Seffah
and Homa Javahery (eds.). John Wiley & Sons, Ltd,
373–385. Retrieved September 21, 2015 from
http://onlinelibrary.wiley.com/doi/10.1002/0470091703.
ch17/summary

4. Steven Dow, T. Scott Saponas, Yang Li, and James A.
Landay. 2006. External Representations in Ubiquitous
Computing Design and the Implications for Design
Tools. Proceedings of the 6th Conference on Designing
Interactive Systems, ACM, 241–250.
http://doi.org/10.1145/1142405.1142443

5. David Gilbert. Android smartphone boom sees over
24,000 distinct models in use worldwide. International
Business Times UK. Retrieved January 10, 2016 from
http://www.ibtimes.co.uk/android-smartphone-boom-
sees-over-24000-distinct-models-use-worldwide-
1514342

6. Hanna-Maria Halkosaari, L. Tiina Sarjakoski, Salu
Ylirisku, and Tapani Sarjakoski. 2013. Designing a
Multichannel Map Service Concept. Human Technology
Volume 9, 1: 72–91.
http://doi.org/10.17011/ht/urn.201305211723

7. Tero Jokela, Jarno Ojala, and Thomas Olsson. 2015. A
Diary Study on Combining Multiple Information
Devices in Everyday Activities and Tasks. Proceedings
of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, ACM, 3903–3912.
http://doi.org/10.1145/2702123.2702211

8. Sung Woo Kim, Han Kyung Jo, and Da Yun Ha. 2011.
Different UI, Same UX: A Design Concept for
Implementing a Locally-Optimized and Globally-
Unified User Experience. In Design, User Experience,
and Usability. Theory, Methods, Tools and Practice,
Aaron Marcus (ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 440–448. Retrieved September 20, 2015
from http://link.springer.com/10.1007/978-3-642-
21708-1_50

9. Michal Levin. 2014. Designing Multi-Device
Experiences: An Ecosystem Approach to User
Experiences across Devices. O’Reilly Media, Beijing.

10. Silvia Lindtner. 2014. Hackerspaces and the Internet of
Things in China: How makers are reinventing industrial
production, innovation, and the self. China Information
28, 2: 145–167. Retrieved October 1, 2015 from
http://cin.sagepub.com/content/28/2/145.short

11. James Lin. 2005. Using Design Patterns and Layers to
Support the Early-stage Design and Prototyping of
Cross-device User Interfaces.

12. Michael Nebeling, Theano Mintsi, Maria Husmann, and
Moira Norrie. 2014. Interactive Development of Cross-
device User Interfaces. Proceedings of the 32Nd Annual
ACM Conference on Human Factors in Computing
Systems, ACM, 2793–2802.
http://doi.org/10.1145/2556288.2556980

13. Mark W. Newman, Mark S. Ackerman, Jungwoo Kim,
et al. 2010. Bringing the field into the lab: supporting
capture and replay of contextual data for the design of
context-aware applications. Proceedings of the 23nd
annual ACM symposium on User interface software and
technology, ACM, 105–108.
http://doi.org/10.1145/1866029.1866048

14. Stephanie Santosa and Daniel Wigdor. 2013. A Field
Study of Multi-device Workflows in Distributed
Workspaces. Proceedings of the 2013 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing, ACM, 63–72.
http://doi.org/10.1145/2493432.2493476

15. Katarina Segerståhl. 2009. Crossmedia Systems
Constructed around Human Activities: A Field Study
and Implications for Design. In Human-Computer
Interaction – INTERACT 2009, Tom Gross, Jan
Gulliksen, Paula Kotzé, et al. (eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 354–367. Retrieved
September 21, 2015 from
http://link.springer.com/10.1007/978-3-642-03658-3_41

16. Henrik Sørensen, Dimitrios Raptis, Jesper Kjeldskov,
and Mikael B. Skov. 2014. The 4C Framework:
Principles of Interaction in Digital Ecosystems.
Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
ACM, 87–97. http://doi.org/10.1145/2632048.2636089

17. Nate Swanner. 2015. The new emulator in Android
Studio 2.0 is 50 times faster than before. The Next Web.
Retrieved January 17, 2016 from
http://thenextweb.com/dd/2015/11/23/the-new-
emulator-in-android-studio-2-0-is-50-times-faster-than-
before/

18. Tyler Tate. 2011. The Rise of Cross-Channel UX
Design. UX Matters. Retrieved from
http://www.uxmatters.com/mt/archives/2011/10/the-
rise-of-cross-channel-ux-design.php

19. Minna Wäljas, Katarina Segerståhl, Kaisa Väänänen-
Vainio-Mattila, and Harri Oinas-Kukkonen. 2010.
Cross-platform Service User Experience: A Field Study
and an Initial Framework. Proceedings of the 12th
International Conference on Human Computer
Interaction with Mobile Devices and Services, ACM,
219–228. http://doi.org/10.1145/1851600.1851637

Mobile DIS 2016, June 4–8, 2016, Brisbane, Australia

72

