

Automatically Generating User Interfaces for Appliances
Jeffrey Nichols

Human Computer Interaction Institute
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213 USA

jeffreyn@cs.cmu.edu

ABSTRACT
Today’s complex appliances are plagued by difficult-to-use
and inconsistent user interfaces. I am building the personal
universal controller (PUC) system that addresses these
problems by separating the user interface from the appli-
ance. Users will control their appliances using personal
devices they already have, such as personal digital assis-
tants (PDAs) or mobile phones. User interfaces are auto-
matically generated so that each appliance interface can be
customized for the user and the device on which the inter-
face is displayed. Interfaces generated by the PUC system
will take into account interfaces previously generated for
the user and create single combined interfaces for multiple
connected appliances, like a home theater, that usually have
separate interfaces for each appliance. I intend to evaluate
the completed system by conducting user studies to show
that my automatically generated interfaces are more usable
than functionally identical manufacturers’ interfaces.

Categories and Subject Descriptors: D.2.2 [Design
Tools and Techniques]: User interfaces—automatic gen-
eration. H.5.2 [User Interfaces]: Graphical user interfaces
(GUIs), Voice I/O—handheld computer interfaces, speech
user interfaces.

Additional Keywords and Phrases: Automatic interface
generation, Pebbles, appliances, personal digital assistants
(PDAs), personal universal controller (PUC)

INTRODUCTION
Users interact daily with many computerized appliances at
their homes and offices, including media players, kitchen
appliances, copiers, etc. The number and complexity of
these appliances is increasing as the cost of microproces-
sors decreases. Unfortunately, the trend has been that as
appliances get more computerized with more features, their
user interfaces become harder to use [1].

I am exploring a solution to this problem that moves the
user interface from the appliance to a separate device that
specializes in providing user interfaces, i.e. a “UI device.”
Personal digital assistants (PDAs) and mobile phones are
examples of devices that might be used as UI devices.
Many phones and PDAs available today have the ability to

communicate with appliances through wireless networking
protocols like 802.11 (Wi-Fi) or Bluetooth. Furthermore,
most phones and PDAs are built with specialized interface
hardware, like color and/or touch-sensitive LCD screens,
which make the creation of high quality user interfaces
easier. A phone or PDA could leverage its specialized
hardware to provide better user interfaces than what can be
built cost-effectively into an appliance.

My approach is called the Personal Universal Controller
(PUC) [5, 7]1. PUC UI devices automatically generate user
interfaces for the complete functionality of appliances such
as stereos, copiers, elevators, and the non-driving functions
of a car. Interfaces can be generated for multiple platforms
and modalities: graphical interfaces can be created on
PDAs, mobile phones, and desktop computers, and speech
interfaces can be created with the Universal Speech Inter-
faces framework [12].

RELATED WORK
Automatic user interface generation has been investigated
by many researchers in the past [13]. Unlike the PUC sys-
tem, most other work relied on an interaction designer to
guide generation and/or to edit the resulting interfaces to
fix any design problems. End-users of the PUC system will
not be willing to spend the time and effort to modify their
user interfaces in these ways, and thus the PUC system
must generate high quality user interfaces on the first at-
tempt. Previous work in automatically generating dialog
boxes suggests that this goal is plausible [4], and I am de-
veloping new techniques that increase the likelihood that
high quality interfaces will be generated without designer
intervention.

There has also been significant work in appliance control
by both industrial and academic groups. UPnP [14] and
HAVi [2] are both consortiums of consumer electronics
companies that are building technologies to unify the con-
trol of electronic appliances. This work will make more
appliances controllable and will help the vision of a PUC
succeed. However, these projects focus on the infrastruc-
ture and have not examined many interface issues.

Researchers have also examined how appliances can be
controlled. Systems such as the Universal Interactor [3] and

1 This paper is adapted from material previously published in [5].

Copyright is held by the author/owner.
UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA
ACM 1-58113-962-4/04/0010

ICrafter [11] are investigating infrastructures to move the
appliance user interfaces to controller devices. Though both
of these systems support simple automatic generation of
user interfaces, both prefer to use hand-generated interfaces
when available. The PUC system differs from these sys-
tems in its focus on automatic user interface generation and
the quality of the resulting interfaces. Xweb [9] is another
research project that automatically generates interfaces for
interactive services from an abstract description. The PUC
system extends the ideas of Xweb with support for ensuring
consistent user interfaces across similar appliances and the
ability to generate a single interface for controlling multiple
appliances.

HAND-DESIGNED INTERFACES AND USER STUDIES
Although automatically generating high-quality interfaces
seems plausible, it is also a hard problem. No previous sys-
tem has successfully generated user interfaces measured to
be of high-quality. The problem can be broken down into
two sub-problems: determining what information an ab-
stract appliance specification should include, and building
an interface generator that can design high-quality inter-
faces from those abstract specifications. As a starting point,
I hand-designed remote control interfaces for several appli-
ances (rather than begin with designing a language for de-
scribing the appliances). Then I conducted user studies to
compare the hand-designed interfaces to the manufacturers’
interfaces, where I found that subjects using my hand-
designed interfaces were twice as fast and made half as
many errors as subjects using the manufacturers’ interfaces
[6]. This approach allowed me to concentrate on what func-
tional information about the appliance is necessary to create
a usable interface and to show that a PUC controller could
be easier to use than interfaces on actual appliances.

PUC ARCHITECTURE
The PUC is designed to allow users to control appliances in
their environment through a remote user interface. The re-
mote control might be a graphical user interface on a PDA
or mobile phone, or it could be a speech interface that uses
microphones in the room. When a user decides to control
an appliance, the controller device would download from
that appliance an abstract functional description and use
that description to automatically generate an interface for
controlling that appliance2. A two-way communication
channel between the controller and the appliance allows the
user’s commands to be sent to the appliance and feedback
to be provided to the user.

The PUC system has four parts: a specification language, a
communication protocol, appliance adaptors, and interface
generators. All of these pieces are described in more detail
elsewhere [7]. Automatic generation of user interfaces is
enabled by the specification language, which allows each
appliance to describe its functions in an abstract way. The
goal in designing this language was to include enough in-
formation to generate a good user interface, but not include
any specific information about look or feel. Decisions

2 I am not addressing the device discovery problem in this system.

about look and feel are left up to each interface generator.
Included in the language are state variables and commands
to represent the functions of the appliance, a hierarchical
“group tree” to specify organization, dependency informa-
tion that defines when states and commands are available to
the user based on the values of other states, and multiple
human-readable strings for each label in a specification.

The communication protocol allows user interface devices
to download specifications, send control messages, and
receive feedback messages that report the state of appli-
ances. The two-way nature of this protocol allows the PUC
to provide better user interfaces than an ordinary one-way
remote control because of the feedback received.

One goal of the system is to control real appliances. Since
there are no appliances available that natively implement
the PUC protocol, translation layers must be built between
the PUC protocol and the appliance’s proprietary protocol.
These translation layers are called appliance adaptors. A
number of appliance adaptors have already been built, in-
cluding a software adaptor for the AV/C protocol that can
control most camcorders that support IEEE 1394 and an-
other adaptor that controls Lutron lighting systems. Hard-
ware adaptors have also been built for appliances that do
not natively support any communication protocol. I am also
interested in building general purpose adaptors to industry
standards, such as UPnP and HAVi.

The last, but most important, piece of the PUC architecture
is the interface generator. Interface generators have been
built on several different platforms, including graphical
interface generators on PocketPC, Microsoft’s Smartphone,
and desktop computers, and a speech interface generator
that uses the Universal Speech Interfaces framework [12].

PROPOSED WORK
I have built a portion of the PUC system that is capable of
generating the user interface for an appliance from an ab-
stract specification [7]. Some automatically generated inter-
faces for Windows Media Player are shown in Figure 1. In
this section I describe new pieces of the system that are
currently being developed.

Domain-Specific Design Conventions
A common problem for automatic interface generators has
been that their interface designs do not conform to domain-
specific design conventions to which users are accustomed.
For example, a good telephone user interface would include
a standard number pad layout and a media player would use
standard icons for play and stop. Solving this problem is
particularly important for the PUC system because remote
control interfaces should make use of design conventions.

I have developed one solution to this problem called Smart
Templates [8]. A Smart Template is created for each situa-
tion where an interface generator might want to apply a
design convention. Templates are standardized in advance
so that specification designers know how to instantiate
templates in an appliance specification and interface gen-
erators can include custom rules that recognize templates

and render them appropriately. The custom rules ensure
that the design convention is rendered in a small portion of
an otherwise automatically generated interface.

For example, I have created a Smart Template for control-
ling media playback. This template allows interface genera-
tors to use the standard icons for play, stop, and pause, and
to show each of these controls as buttons. Without the tem-
plate, an interface generator would probably render these
controls as a pull-down combo-box containing items for
play, stop, and pause. This template is used in two of the
interfaces shown in Figure 1. Note that a template may be
rendered differently on different platforms.

I have built a preliminary implementation of Smart Tem-
plates into the PUC system, which supports some of the
many Smart Templates that will be needed. I have devel-
oped a list of more than ten Smart Templates that I plan to
implement, and I expect the list to grow as I look at new
and different appliances. I also expect that some Smart
Templates will naturally combine with others to create new
templates. For example, date and time are often used to-
gether, as are volume and mute. I hope to implement Smart
Templates so that templates can be flexibly combined with
less work than creating a new template from scratch.

Interface Consistency
The PUC system has a unique opportunity to ensure exter-
nal consistency among all interfaces that a user generates
because PUC users have their own personal devices. This

allows the PUC user interface device to remember previ-
ously generated interfaces and record usage statistics for
those interfaces, which can be used to ensure that newly
generated interfaces are consistent with older ones. For
example, the interface that I generate for my new car stereo
will probably be more usable if its layout is consistent with
my home stereo interface that I use frequently.

The user interfaces generated by a PUC can be made con-
sistent in two ways: 1) they can be consistent with other
applications on the same controller device, and 2) they can
be consistent with past interfaces generated for appliances
with similar functions. The first can be achieved using the
standard toolkit available on the controller device, and us-
ing generation rules that match the device’s UI guidelines.

The second is more challenging and can be broken down
into two sub-problems: finding previously generated inter-
faces that are relevant, and determining how to integrate
decisions from the past interfaces into the new interface.

A relevant previously generated interface must include
some of the same functionality as a new interface being
generated. Unfortunately, it is difficult to conclusively
know whether two functions on different appliances are the
same. Functions may be similar if they have the same
name, share some of the same labels, or have similar type
information, but none of these alone conclusively show
similarity. For example, a volume function might be repre-
sented by an integer ranging from 0-50 on one appliance
and as an enumeration with 10 possible values on another
appliance. I am exploring probabilistic solutions to this
problem that can compare all similarity factors at once.

Once previous interfaces with similar functions have been
found, the interface generator can examine those interfaces
and decide how to make the new interface consistent. The
appropriate technique will also depend on how similar the
previous appliances are to the new appliance. So far I have
identified three levels of similarity, termed sparse, branch,
and significant (see Figure 2), each of which suggests a
different technique to achieve consistency. Appliances with
sparse similarity will try to represent each similar function
with the same interface controls that the user saw in the
older interface. Appliances with branch similarity will try

Figure 1. Automatically generated interfaces for Windows Media
Player. On the left, two screens from a Smartphone interface. On
the right, a screen from a PocketPC interface.

Figure 2. Examples of the three different levels of similarity. The trees represent the structure of the user interface as given by the appli-
ance specification, with one tree representing the new specification and the other a previously generated specification. Nodes with the
same shading indicate functions that were found to be similar across both appliances. a) sparse similarity: the appliances have a small
number of similar functions spread throughout the tree. b) branch similarity: the appliances have a number of similar functions in one
branch of the structure. c) significant similarity: the appliances share many similar functions, though they might be organized differently.

to integrate into the new interface the layout and organiza-
tion of the related functions in the previous interface. Ap-
pliances with significant similarity will try to replicate the
same layout and organization in the new interface that the
user has seen in previous interfaces.

Multi-Appliance User Interfaces
A novel feature of the PUC system will be its ability to
generate a single user interface for multiple appliances that
have been connected together. One example is for a typical
home theater, which includes separate VCR, DVD player,
television, and stereo appliances, but might be more easily
thought of as a single integrated appliance. A PUC inter-
face for a home theater would ideally have features like a
“Play DVD” button that would turn on the appropriate ap-
pliances, set the TV and stereo to the appropriate inputs,
and then tell the DVD player to “Play.”

A key question is how to model the connections between
appliances and the interactions that users have which span
appliances. Ideally a wiring diagram showing how each
appliance physically connects to the others will be the only
piece of system-specific modeling that is required. Tasks
that users want to perform might be assembled from the
wiring diagram and sub-tasks that are stored as part of each
appliance’s specification. I plan to develop a new distrib-
uted task modeling language, based on previous languages
such as ConcurTaskTrees [10], to facilitate this process.

EVALUATION
There are two ways in which the PUC system must be
evaluated in order to be judged a success: breadth of appli-
ances supported by the specification language and interface
generators, and quality of the generated interfaces com-
pared to the manufacturers’ interfaces on the actual appli-
ances. For breadth I will compile a list of appliances that
are interesting for their complexity or for a unique feature,
write specifications for these appliances, and generate inter-
faces from these specifications on each interface generation
platform. To show quality, I will conduct a user study com-
paring performance on the generated interfaces and the
manufacturers’ interfaces on the actual appliances.

I would also like to compare the PUC system to previous
systems that have automatically generated interfaces. Un-
fortunately, many of these systems are a few years old and I
am not yet sure how to perform such a comparison.

CONCLUSIONS
Most appliances on the market today are computerized, and
within the next ten years most appliances will also feature
networking technologies. Unfortunately, the user interfaces
for most of these appliances are likely to be complicated
and difficult to use. I am developing a system called the
personal universal controller that will address this problem
by moving the user interface from the appliance to an in-
termediary “UI device.” The UI device can be easier to use
because its interfaces use conventions users expect, create
interfaces that are consistent with previous interfaces, and
allow control of multiple appliances via a single interface.

ACKNOWLEDGMENTS
I would like to thank Brad Myers for advising me on this work. This work
was funded in part by grants from NSF, Microsoft, General Motors, and
the Pittsburgh Digital Greenhouse, and equipment grants from Mitsubishi
Electric Research Laboratories, VividLogic, Lutron, and Lantronix. The
National Science Foundation has funded this work through a Graduate
Research Fellowship and under Grant No. IIS-0117658.

REFERENCES
1. Brouwer-Janse, M.D., Bennett, R.W., Endo, T., van Nes,

F.L., Strubbe, H.J., and Gentner, D.R. “Interfaces for con-
sumer products: "how to camouflage the computer?"” in
CHI'1992. Monterey, CA: pp. 287-290.

2. HAVi, “Home Audio/Video Interoperability,” 2003.
http://www.havi.org.

3. Hodes, T.D., Katz, R.H., Servan-Schreiber, E., and Rowe, L.
“Composable ad-hoc mobile services for universal interac-
tion,” in Proceedings of the Third annual ACM/IEEE inter-
national Conference on Mobile computing and networking
(ACM Mobicom'97). 1997. Budapest Hungary: pp. 1 - 12.

4. Kim, W.C. and Foley, J.D. “Providing High-level Control
and Expert Assistance in the User Interface Presentation De-
sign,” in Proceedings of INTERCHI'93 Amsterdam, The
Netherlands: pp. 430-437.

5. Nichols, J., “Automatically Generating Interfaces for Appli-
ances,” in Advances of Pervasive Computing, H.H. A. Fer-
scha, G. Kotsis, Editor 2004, pp. 105-110.

6. Nichols, J., Myers, B.A. “Studying The Use Of Handhelds to
Control Smart Appliances,” in 23rd International Confer-
ence on Distributed Computing Systems Workshops (ICDCS
'03). 2003. Providence, RI: pp. 274-279.

7. Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris,
T.K., Rosenfeld, R., Pignol, M. “Generating Remote Control
Interfaces for Complex Appliances,” in UIST 2002. Paris,
France: pp. 161-170.

8. Nichols, J., Myers, B.A., Litwack, K. “Improving Automatic
Interface Generation with Smart Templates,” in Intelligent
User Interfaces. 2004. Funchal, Portugal: pp. 286-288.

9. Olsen Jr., D.R., Jefferies, S., Nielsen, T., Moyes, W., and
Fredrickson, P. “Cross-modal Interaction using Xweb,” in
Proceedings of UIST'00. San Diego, CA: pp. 191-200.

10. Paterno, F., Mancini, C., Meniconi, S. “ConcurTaskTrees: A
Diagrammatic Notation for Specifying Task Models,” in
INTERACT. 1997. Sydney, Australia: pp. 362-269.

11. Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P., and
T.Winograd. “ICrafter: A service framework for ubiquitous
computing environments,” in UBICOMP 2001. Atlanta,
Georgia: pp. 56-75.

12. Rosenfeld, R., Olsen, D., Rudnicky, A., “Universal Speech
Interfaces.” interactions: New Visions of Human-Computer
Interaction, 2001. VIII(6): pp. 34-44.

13. Szekely, P. “Retrospective and Challenges for Model-Based
Interface Development,” in 2nd International Workshop on
Computer-Aided Design of User Interfaces. 1996. Namur:
Namur University Press. pp. 1-27.

14. UPnP, “Universal Plug and Play Forum,” 2003.
http://www.upnp.org.

