
Generating Consistent User Interfaces for Appliances

Jeffrey Nichols and Brad A. Myers
Human Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213 USA
{ jeffreyn, bam }@cs.cmu.edu

ABSTRACT
We are building a system called the personal universal
controller (PUC) that automatically generates interfaces for
handheld devices that allow users to remotely control all of
the appliances in their surrounding environment. One of the
goals of this system is to create interfaces that are consis-
tent for the user. We are interested in two forms of
consistency: with other interfaces on the same handheld
device and with previously generated interfaces for similar
appliances. While these problems differ slightly from the
problem of ensuring an application has a consistent inter-
face across multiple devices, we believe a solution to any
of these problems will prove useful for solving the others.
This paper discusses the challenges that we see for auto-
matically generating consistent interfaces and ideas that we
are pursuing to address the consistency problem.

Keywords
Automatic interface generation, consistency, Pebbles, ap-
pliances, personal digital assistants (PDAs), smart phones,
personal universal controller (PUC)

INTRODUCTION
The goal of the personal universal controller (PUC) system
[2] is to improve everyday appliance user interfaces by
moving them from the appliance to a handheld device. We
envision using PDAs and smart phones to control any com-
puterized appliance in the office or home, such as stereos,
microwave ovens, copiers, and answering machines. A key
feature of the PUC system is that it automatically generates
its user interfaces from an abstract description of the appli-
ance. This allows our system to provide a number of
benefits, including: interfaces can be personalized to the
user, interfaces for multiple connected appliances can be
combined together into one interface for the connected
system, and generated interfaces can be made consistent.
PUC interfaces can be made consistent in three ways: with
other interfaces on the user’s handheld device, with inter-
faces the user has previously interacted with, and with
other interfaces for the same appliance on different devices.

We have already addressed the first type of consistency by
using standard interface toolkits and ensuring that our
automatic generation rules conform to user interface guide-
lines for the device on which we are generating interfaces.
We are currently working to address the second consis-
tency problem, as discussed below. We are addressing the
third consistency problem by using similar generation rules
on different platforms (see Figure 1), and by using familiar
idioms, such as the conventional play and stop buttons for
media players, with a technique we call Smart Templates
[3]. We are focusing on the first two problems however,
because we feel these types of consistency will contribute
more to achieving high usability for our users.

CHALLENGES FOR CONSISTENCY
What does it mean to make an interface consistent? While
there are design guidelines [4] that suggest some answers
to these questions, many of these are not instructive for
achieving previous interface or multi-device consistency.
A common mantra is to ensure that users can always find
the functions they are looking for by always putting them
in the same place. A key question is how to do this when
interfaces are structured completely differently on different
devices. For example, a PocketPC interface has a two-
dimensional layout similar to a desktop interface, but a
Microsoft Smartphone interface is list-based and navigated
very differently from a standard desktop interface (see
Figure 1). User studies are needed to evaluate how users
map interface structures between different interface styles,
and to determine whether consistency can be achieved for
such different styles.

INTERFACE CONSISTENCY IN THE PUC SYSTEM
We have found that the problem of generating interfaces
that are consistent with previous interfaces can be broken
down into two sub-problems: finding previously generated
interfaces that are relevant, and determining how to make
the new interface consistent with those previous interfaces.
We will only discuss the second sub-problem here.
Once previous interfaces with similar functions have been
found, the interface generator can examine those interfaces
and decide how to make the new interface consistent. The
appropriate technique will depend on how similar the pre-
vious appliances are to the new appliance. There seem to
be three levels of similarity, termed sparse, branch, and

Copyright is held by the author/owner.
Submitted to the Second Workshop on Multi-User and Ubiquitous
User Interfaces (MU3I) 2005

 a) b)

Figure 1. Two examples of interfaces generated by the PUC system
for a) the Microsoft Smartphone and b) the PocketPC. Note that the
interface for the Smartphone is list-based while the PocketPC inter-
face uses a standard two dimensional layout. An interesting
question: are these interfaces consistent?

Figure 2. Examples of the three different levels of similarity, with
trees representing the structure of the new and old interfaces and
same shading indicating similar functions. a) sparse similarity: the
appliances have a small number of similar functions spread
throughout the tree. b) branch similarity: the appliances have a
number of similar functions in one branch of the structure. c) sig-
nificant similarity: the appliances share many similar functions,
though they might be organized differently.

significant (see Figure 2), each of which suggests a differ-
ent technique to achieve consistency. Appliances with
sparse similarity will try to represent each similar function
with the same interface controls that the user saw in the
older interface. Appliances with branch similarity will try
to integrate into the new interface the layout and organiza-
tion of the related functions in the previous interface.
Appliances with significant similarity will try to replicate
the same layout and organization in the new interface that
the user has seen in previous interfaces.
One of the difficulties with the significant similarity case is
deciding how to deal with the few functions that are not
shared across appliances. An important question to answer
here is the importance of visual consistency. If visual con-
sistency is very important to users, then we might choose to
leave the controls in the new interface for features that
were only available on the old appliance. The controls
would be disabled to prevent use, but would ensure that the
new interface looks exactly like the old interface. Another
solution would be to leave blank spaces instead of disabled
controls, which would be less confusing to the user but also
makes the interfaces less visually consistent. In either of
these cases, new controls would be added below the previ-
ous interface. If it is only important that common functions
be in the same locations, then controls for unavailable fea-
tures might be replaced with controls for features that are
only available on the new appliance.
We are also planning to integrate usage information into
these algorithms so that we can ensure that we are making
our new interfaces consistent with interfaces that the user is
familiar with. An important question that we have not ad-
dressed is how much must a user interact with an interface
before they will benefit from consistency? How recently

must a user have interacted with an interface before the
benefits of consistency begin to degrade? Some of this in-
formation may be suggested by models of human
performance [1]. We also plan to conduct user studies to
evaluate these issues.

CONCLUSIONS
We are currently extending our PUC system to enable gen-
eration of interfaces that are consistent with previous
interfaces the user has interacted with. We are also address-
ing the multi-device consistency problem. We believe that
these two problems share many of the same features and
that solving one will suggest solutions for the other.

ACKNOWLEDGMENTS
This work was funded in part by grants from NSF, Microsoft,
General Motors, and the Pittsburgh Digital Greenhouse, and
equipment grants from Mitsubishi Electric Research Laboratories,
VividLogic, Lutron, and Lantronix. The National Science Foun-
dation has funded this work through a Graduate Research
Fellowship and under Grant No. IIS-0117658.

REFERENCES
1. Kieras, D. “GOMS modeling of user interfaces using

NGOMSL,” in Conference on Human Factors in Computing
Systems. 1994. Boston, MA: pp. 371-372.

2. Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris,
T.K., Rosenfeld, R., Pignol, M. “Generating Remote Control
Interfaces for Complex Appliances,” in UIST 2002. Paris,
France: pp. 161-170.

3. Nichols, J., Myers, B.A., Litwack, K. “Improving Automatic
Interface Generation with Smart Templates,” in Intelligent
User Interfaces. 2004. Funchal, Portugal: pp. 286-288.

4. Shneiderman, B., Designing the User Interface: Strategies for
Effective Human-Computer Interaction, Second Edition. 1992,
Reading, MA: Addison-Wesley Publishing Company.

	ABSTRACT
	Keywords

	INTRODUCTION
	CHALLENGES FOR CONSISTENCY
	INTERFACE CONSISTENCY IN THE PUC SYSTEM
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

