

Huddle: Automatically Generating Interfaces for
Systems of Multiple Connected Appliances

Jeffrey Nichols, Brandon Rothrock, Duen Horng Chau, Brad A. Myers
Human Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

{jeffreyn, rothrock, dchau, bam}@cs.cmu.edu
http://www.cs.cmu.edu/~jeffreyn/huddle/

ABSTRACT
Systems of connected appliances, such as home theaters
and presentation rooms, are becoming commonplace in our
homes and workplaces. These systems are often difficult to
use, in part because users must determine how to split the
tasks they wish to perform into sub-tasks for each appli-
ance and then find the particular functions of each appli-
ance to complete their sub-tasks. This paper describes
Huddle, a new system that automatically generates task-
based interfaces for a system of multiple appliances based
on models of the content flow within the multi-appliance
system.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Design, Human Factors
Keywords: Automatic interface generation, aggregate user
interfaces, handheld computers, personal digital assistants,
mobile phones, home theater, appliances, personal univer-
sal controller (PUC), Pebbles

INTRODUCTION
The computerized appliances in our homes and offices are
increasingly becoming connected, which allows multiple
appliances to work together as a system to accomplish
tasks that might otherwise have been impossible. Such
connected systems are already commonplace for home
theaters, presentation rooms, and video-conferencing sys-
tems.
The problem with many of these systems of appliances is
that while their functionality is integrated, their user inter-
faces are not. In order to use these appliances together,
users must learn to operate each appliance separately and
also learn how each appliance’s functions integrate with
the others. This can lead to problems where the user cor-
rectly configures some appliances but not all. For example,

a common home theater problem is seeing video from the
desired DVD on the television but not hearing the sound
from that same DVD on the system’s speakers.
Today, some of these problems can be addressed by uni-
versal remote controls that integrate the user interfaces of
each appliance into a single remote control device. These
devices typically require a substantial amount of tedious
programming however, such as entering the IR control
codes for each button on each remote control, specifying
sets of codes that must be sent to start each task, and de-
signing panels of controls for use during each task. Many
high-end users now pay professional system integrators to
do this programming rather than try to do it themselves.
In this paper we present Huddle, a system for automatically
generating integrated task-based user interfaces for a sys-
tem of multiple connected appliances (see Figure 1). A key
challenge for Huddle is to generate these interfaces without
requiring substantial programming that is specific to each
system of appliances. To address this challenge, Huddle

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
UIST’06, October 15–18, 2006, Montreux, Switzerland.
Copyright 2006 ACM 1-59593-313-1/06/0010...$5.00.

 a) b)

Figure 1. Interfaces generated by Huddle for a home
theater system that is currently being used to watch a
DVD through a television and audio receiver. a) The
Flow-Based Interface (FBI) that allows users to
specify their high-level goals, and b) an aggregate
interface generated for the most commonly used
functions of the content flow from the DVD to
television and receiver.

relies on a description of content flow within each multi-
appliance system. Content flows have two important prop-
erties, which make them ideal for our use:
1) Content flows seem to be closely related to user goals

with multi-appliance systems. For example, in a home
theater, the user may want to watch a DVD movie,
which involves seeing the video on the television and
hearing the audio through the stereo’s speakers. To ac-
complish this, each of the appliances in the home thea-
ter must be configured to allow content from the DVD
player to flow to the appropriate places.

2) The content flows of a system can be described as the
separate flows within each appliance combined with a
wiring diagram showing how all of the appliances are
connected. This is an important property, because it
divides the modeling work among the manufacturers
of the appliances. The only system-specific input
needed by Huddle is a diagram showing how the ap-
pliances are connected, which can be supplied by an-
other application, a future wiring technology or the
user.

Huddle uses knowledge of the appliances’ functions and
how these functions relate to the content flows to automati-
cally generate a useful set of interfaces, and automatically
configure appliances for any set of content flows. Huddle
has three main features:
• A flow-based user interface that allows users to

quickly specify a content flow. This interface allows
the user to specify the endpoints for a flow, and op-
tionally the path that the content should take between
the endpoints (if there are multiple choices).

• A planner, based on the GraphPlan algorithm [2], that
is able to automatically configure appliances to en-
able the user’s desired content flows. If one or more
requested flows cannot be activated, a question-
answer interface can help the user fix the problem.

• Aggregate interface generators, which produce user
interfaces that combine the functionality of multiple
appliances based on the current set of active content
flows and other parameters. The aggregate interfaces
that we currently generate are: active flow controls,
active flow setup, general setup, and merged controls.

Huddle is implemented on top of our Personal Universal
Controller (PUC) system [8], which previously generated
remote control interfaces only for individual appliances.
Like the PUC, users of Huddle use a handheld device such
as a PDA or mobile phone to control all of the appliances
in their multi-appliance systems. Huddle receives from
each appliance an abstract specification of that appliance’s
functions, which also includes a description of the appli-
ance’s physical ports and internal content flows. Unlike
other languages, such as UPnP, this specification does not
describe how the user interface should appear. Huddle uses
the specifications from each appliance and a description of
how the appliances are connected to build a complete

model of the content flow for the entire system of appli-
ances. Huddle automatically generates user interfaces from
this model.
In this paper, we start by putting Huddle in context with the
related work in this area. Then we describe the scenarios
that we will use as examples throughout the rest of the pa-
per. In the next section we describe Huddle’s architecture,
followed by a discussion of our content flow modeling
language. The following sections describe the user inter-
faces that we have created using content flows, including
our flow-based interface with the integrated planner and
the automatically generated aggregate interfaces. We con-
clude with a discussion of these techniques and future
work.

RELATED WORK
For years many companies have been selling so-called
“universal remote controls,” which integrate the control of
televisions, VCRs, and stereos into a single remote control
unit. The problem with these remote controls is that the
programming must be done manually, which can be a tedi-
ous and time-consuming task, especially for a large number
of appliances. The most interesting of the devices in this
class is the Harmony remote [5] from Logitech, which at-
tempts to internally maintain a record of the current state
for all of the appliances that it can control. This has the
limitation that the remote must know the state of the system
when it is first used and that all control must be performed
using the Harmony remote afterwards, but, like Huddle, it
has the advantage that the remote can hide functionality
that is not available in the current state. The user interface
is further simplified using a task-based approach that al-
lows the user to select such options as “play movie in
VCR” or “play DVD.” The built-in set of tasks in the Har-
mony device is limited to the ones that the company has
pre-programmed, and adding support for new tasks is
nearly as laborious as programming a regular universal
remote control. The pre-programmed tasks are a subset of
the content flows that Huddle can support with its flow-
based interface.
The Roadie system [4] provides a goal-oriented user inter-
face for consumer electronics that may combine features of
multiple appliances. Like Huddle, Roadie uses a planning
algorithm to automatically configure appliances to match
user goals. Unlike Huddle, Roadie uses a database of com-
monsense knowledge to find and understand possible user
goals within the system. The user can specify the action
they wish to perform using natural language, and then
Roadie will attempt to interpret this action using its data-
base and create a plan. Because the possible actions are
restricted to the contents of the commonsense database,
Roadie may not be able to support uncommon actions, such
as those related to an uncommon configuration of appli-
ances or to a new class of appliance that has just been
added to the system. Huddle, in contrast, is able to acquire
a model of the system from the appliances themselves, and
thus is not subject to these limitations.

The Stanford ICrafter [11] is a framework for distributing
and composing appliance interfaces for many different con-
trolling devices. To support composition, ICrafter relies on
a set of “service interfaces” (that abstract the functionality
of services) and a set of interface aggregators that are each
hand-coded to build an interface for a particular pattern of
service interfaces. When a user requests an interface for
multiple services, ICrafter looks for an aggregator that
matches the pattern and, if an aggregator is found, returns a
single interface generated by that aggregator. For example,
a camera might implement the DataProducer interface and
a printer might implement the DataConsumer interface.
The generic aggregator for the DataPro-
ducer/DataConsumer combination could then generate a
combined interface for the camera and printer.
ICrafter’s approach has several limitations however, which
Huddle overcomes. First, a generic aggregator in ICrafter
is only able to generate an interface for the common prop-
erties and functions shared by its service interfaces and
none of the unique functions that may be implemented by a
specific service. Second, ICrafter’s generic aggregators are
not able to include any design conventions that might be
specific to the services. For example, a play button would
be appropriate if a DataProducer was a DVD player but not
if the producer was a camera. For ICrafter to produce inter-
faces with unique functions and appropriate design conven-
tions, a special purpose interface aggregator would need to
be built for the specific appliances involved. In contrast,
Huddle’s interface aggregation is faithful to the specific
appliance interfaces that are being aggregated and includes
all functionality of the connected appliances.

Omojokun et al. [10] have examined how remote control
interfaces for a system of appliances might be generated
from recordings of actual usage. Remote control usage was
recorded by an IR receiver that was placed near the home
theaters of several users, and the information gathered by
the IR receiver was used to generate button-only interfaces.
Huddle’s generated interfaces are more sophisticated, but
do not currently take into account previous usage. Includ-
ing usage in Huddle’s designs is an area for future work.
When designing Huddle, we considered the use of task
models as an alternative to the content flow model that
Huddle currently uses. Task models have been used as the
basis for generating interfaces in many systems, such as
TERESA [6]. We chose not to use task models in Huddle
because we could not find a means to build a system-wide
task model from independent pieces of a task model given
by each appliance. There would be advantages to using
task models however, such as improved description of the
user’s goals, and we will continue to consider the use of
task models in Huddle in the future.
Several systems have explored the infrastructure issues that
are involved in connecting and configuring systems of mul-
tiple appliances. One such system is Speakeasy [7], which
uses mobile code to allow arbitrary devices and services to
interact, and also to distribute user interfaces to the hand-
held devices from which users interact. While Speakeasy
might be able to automatically provide a wiring diagram to
Huddle, it does not provide support for automatically gen-
erating user interfaces or for combining user interfaces for
multiple appliances into a single aggregate user interface.

MULTI-APPLIANCE SYSTEM SCENARIOS
In this section, we describe two scenarios, a home theater
and a presentation room, that will be used throughout the
rest of the paper to demonstrate the features of Huddle.
The home theater setup (see Figure 2a) includes five appli-
ances: an InFocus television, a Sony audio receiver with
attached speakers, a Philips DVD player, and two identical
Panasonic VCRs. This setup supports many common tasks,
such as watching television, watching a movie from either
a DVD or videotape, and listening to the radio. It also sup-
ports a number of more complicated tasks, such as copying
from a tape in VCR #1 to a tape in VCR #2, or watching
television on one channel while recording up to two other
channels. Sometimes tasks can be mixed, such as watching
a sporting event on television while listening to a radio
broadcast of the play-by-play. Certain tasks are impossible
with this setup, such as recording a DVD to videotape,
recording the radio, or recording from a tape in VCR #2 to
a tape in VCR#1. As we will show below, Huddle’s flow-
based interface makes it clear to the user which flows are
not possible.
The presentation room configuration has three physical
devices: a projector, a VCR, and a laptop. The laptop’s
functions however, have been separated into several inde-
pendent “logical appliances” which include the PowerPoint
and Windows Media Player applications, the task manager,

a) Home Theater

b) Presentation Room

Figure 2. Configuration of appliances in our home
theater (a) and presentation room (b) scenarios.

and control of the external video port. This configuration
supports common presentation tasks such as showing
slides, showing video from the laptop, and showing video
from a VCR tape.

ARCHITECTURE
In the Huddle system, a handheld device, such as a PDA or
mobile phone, is the center for all communication with
appliances and all interactions with the user. Huddle does
not prevent users from interacting directly with the appli-
ances however, and will not be disturbed if a user chooses
to do so. An overall view of Huddle’s architecture is shown
in Figure 3.
Huddle requires three types of input in order to function.
First, it requires a wiring diagram that describes how the
multi-appliance system is wired together. Currently this
diagram is specified by hand in XML, though we imagine
that future wiring technologies might be able to automati-
cally detect and provide this information. The wiring dia-
gram contains a number of wire <begin, end> pairs corre-
sponding to the physical wires that connect the appliances.
The second type of input Huddle requires is a PUC appli-
ance specification from each of the appliances in the multi-
appliance system. In addition to the description of the func-
tions of each appliance from our previous work [8], Huddle
requires the specifications include descriptions of the
physical ports on each appliance and the internal content
flows within each appliance. By combining this informa-
tion together, Huddle creates a complete model of the pos-
sible content flows through the entire system (see the cen-
ter portion of Figure 3). Huddle then uses this information
to generate user interfaces.
Huddle also requires a knowledge base of functional simi-
larity information, which is provided by our Uniform sys-
tem [9]. This information allows Huddle to find functions
with similar purposes across appliances in the system,
which can be used to create interfaces that organize func-
tions from multiple appliances in a meaningful way.
Huddle produces two kinds of interfaces to help users in-
teract with their multi-appliance systems. The Flow-Based
Interface (FBI) allows the user to quickly create and acti-
vate content flows between appliances by tapping or drag-
ging the icons for desired sources and sinks onto the
screen. The goal of this interface is to make high-level
tasks easy to execute with the multi-appliance system.
Huddle also generates Aggregate User Interfaces (AUIs)
that combine functions from multiple appliances into a
single user interface. Various types of AUIs support differ-
ent tasks within the multi-appliance system. The Active
Flow Control AUI combines the most common control
functions associated with the active content flows into a
single interface, with the goal of making common content
manipulations (such as volume control) easy to access. The
Setup AUIs make infrequently used configuration parame-
ters easy for the user to access, with the goal of supporting
expert usage of the appliance system. Finally, AUIs merge
some functions that occur on multiple appliances into a

single point of control on one interface. This allows the
user to do such things as set the current time in our AUI
and have this change automatically broadcast to each appli-
ance in the system.

CONTENT FLOW MODELING
Huddle adds two new sections to the PUC specification
language to specify the physical ports of the appliance and
the internal content flows that use those ports. An example
from the Philips DVD Player for both of these sections is
shown in Figure 4.
An early question in this project was whether Huddle’s
description of the input and output ports of the appliance
should match the physical ports of the appliance or be ab-
stracted in a way that made the content flows convenient to
specify. We chose an intermediate approach that represents
all of the physical ports but also includes port-groups that
allow the content flow specification to refer to multiple
physical ports using a single label. We hope that including
the physical ports in the specification will allow us to build
a usable configuration tool in the future that can give spe-
cific wiring instructions to the user. This tool could help
the user wire up their system while at the same time pro-
viding Huddle with the required wiring information.
The content flows within an appliance are represented us-
ing three different structures:

Figure 3. Architecture of the Huddle system.

• Sources represent content that originates within the
appliance, such as from a DVD player playing a DVD
or a VCR playing a videotape. Display devices that
have internal tuners, such as televisions receiving
broadcast signals through antennas, are not defined as
sources however, because the content does not origi-
nate inside of the tuning device. Instead, broadcast sig-
nals are described as a special “external source” that
must be routed through a tuner to be viewable by the
user.

• Sinks represent locations where content may either be
displayed to the user or stored for later retrieval. For
example, the television screen, receiver speakers, and
VCR tape (for recording) may all be sinks for content
in our home theater scenario.

• Pass-throughs represent an appliance’s ability to take
in some content as an input and redirect it through one
or more of its outputs. For example, the InFocus tele-
vision in our scenario has the capability of taking the
audio it receives as an input and making it available as
an output for other appliances. Tuning appliances,
such as cable television set-top boxes, are also repre-
sented as pass-throughs, which usually take a multi-
channel input from an antenna and output single chan-
nel data.

The pass-through structure is particularly important, be-
cause it allows Huddle to track the flow of content from its
origination point, through multiple appliances, to its final
destination. Previous systems, such as a Speakeasy [7] and
Ligature [3], have used only sources and sinks to model the
path of data within a system. Using their approach, it is
difficult to know whether the content a device is receiving
as input is being redirected through an output, which makes
determining the full content flow impossible. Without
knowledge of the full content flow from start to finish, we
could not infer the task that the user is trying to perform
and generate a useful interface for it.
Each content flow of an appliance will usually have a de-
pendency formula that specifies when that content flow is
active based on the state of the appliance. For example, in
Figure 4 the DVD player’s source is active when the DVD
player is powered on, a disc is in the player, and the play
mode is not stopped (stop corresponds to a value of “1” in
this specification). Content flows are also explicitly linked
to the physical ports of the appliance, and each of these
ports may also have a dependency formula that specifies
when that particular port is being used by the content flow.
For example, in Figure 4, the S-Video output of the DVD
player is only available when the DVD player’s progres-
sive scan feature is turned off. This dependency informa-
tion is used by Huddle to automatically determine how to
activate a particular flow of content based on the current
state of the multi-appliance system.
Channels are an important concept in the Huddle content
modeling language. When a pass-through or sink receives a
multi-channel input, a channel variable may be specified

from the appliance that specifies the particular channel
being tuned. The content flow language can also specify
that one channel of a multi-channel stream is being re-
placed by the appliance, which is often used by VCRs to
specify that the output of the tape source can appear on
channel 3 or 4.
Each content flow and each of the ports to which it links
may also specify a set of objects and groups within the
appliance specification that are related to the appliance’s
processing of the content in the flow. This is useful, for
example, for specifying that the volume control on the re-
ceiver is related to the speaker sink, or that the tint, con-
trast, and brightness controls are related to the television’s
screen sink. The information about related objects is very
important for generating Huddle’s aggregate user inter-
faces.

<ports>
 <outputs>
 <port-group name="SD-Output"
 content-type="video">
 <port name="Video" content-type="video"
 physical-type="RCA"/>
 <port name="S-Video" content-type="video"
 physical-type="S-Video"/>
 </port-group>
 <port-group name="Progressive Scan Output"
 content-type="video">
 ...
 </port-group>
 ...
 </outputs>
</ports>
<content-flow>
 <source name="Disc" content-type="av">
 <active-if>
 <equals state="Base.Power">
 <constant value="true"/></equals>
 <equals state="Base.Status.DiscIn">
 <constant value="true"/></equals>
 <not>
 <equals state="Base...PlayControls.Mode">
 <constant value="1"/></equals>
 </not>
 </active-if>
 <output-ports>
 <port name="SD-Output.Video">
 <active-if>
 <equals state="Base...ProgressiveScan">
 <constant value="false"/></equals>
 </active-if>
 </port>
 ...
 <port-group name="Audio">
 <active-if>
 <equals state="Base...AudioMute">
 <constant value="false"/></equals>
 </active-if>
 </port-group>
 ...
 </output-ports>
 <objects>
 <group name="Base.Controls.Common"/>
 <group name="Base.Setup.Audio"/>
 <group name="Base.Setup.Video"/>
 </objects>
 </source>

Figure 4. Example of the physical port and content
flow model from our Philips DVD Player specifica-
tion

FLOW-BASED INTERFACE
The Flow-Based Interface (FBI) is designed to allow users
to quickly specify a flow from one source of content to one
or more content sinks. For example, the user might specify
a flow from the DVD Player’s disc to the television’s
screen and the receiver’s speakers. When the user activates
this flow, Huddle inspects the dependencies of each of the
flow’s elements, generates a plan to satisfy these depend-
encies, and executes that plan to enable the flow. If the
flow cannot be enabled, perhaps because of other active
flows that the user has already specified, the system will
prompt the user with a dialog box and attempt to help the
user resolve the problem. Several examples of the FBI in
action are shown in Figure 1a and Figure 5.
To make the idea behind the FBI clear, we will describe the
interaction that a user would have with the interface in or-
der to start watching a DVD movie. Figure 5a shows the
FBI in its initial blank state. Near the top of the screen is a
blank flow with empty spaces for a source and sink, with
an arrow between them. At the bottom of the screen is the
appliance bar, which contains an icon corresponding to
each appliance that has a source or sink in the system. Ad-
ditional flows may be added to the screen, by pressing the
“Add Flow” button at the top of the screen, and the scroll-
bar on the right allows for scrolling when more flows have
been added to the list than can be shown. There are two
usage scenarios that we envision for this interface: the user
creates flows for each of her common tasks and switches
among them, or the user uses just one flow and modifies it
as necessary to suit the current task.
When a user wishes to begin a flow, she drags an icon from
the appliance bar to one of the empty spaces in the blank
flow. The empty space highlights when she drags the icon
over it, indicating that the appliance icon may be placed
there. Once the DVD icon has been placed in the source
location (see Figure 5b), content type icons appear on left
side of the arrow and the icons in the appliance bar corre-
sponding to appliances that cannot be sinks for the DVD

player source are grayed out. This includes icons that cor-
respond only to sources, such as the broadcast television
and radio icons, and the VCR icons that cannot be sinks for
DVD content because of our home theater’s particular wir-
ing configuration. The user can now see that the receiver
and the television are the only available appliances that will
work with the DVD player. In this scenario, the user first
drags the television to the empty sink space on the flow. At
this point, the green Go button will become enabled be-
cause this configuration corresponds to a valid flow (Note
that the television speakers can be a sink for audio con-
tent). The asterisk above the arrow on the right side indi-
cates that the flow-based interface will infer the type of
content to route to the television based on the specified
sinks.
The user now wishes to add the receiver as an additional
sink. To do so, she presses the “Split” button underneath
the arrow on the left. This causes the flow to be split into
two arrows and a new empty sink space to be created. To
add the receiver’s speakers as a sink, the user can then drag
the receiver to the empty space. The result is the view
shown in Figure 1a. In this scenario, Huddle is able to
automatically infer that the TV speakers should not be
used, because an audio sink was added to the flow. If the
user wanted audio to come from both sets of speakers, she
could indicate this by tapping the content type icon next to
the television and selecting the audio/video content type.
The user can now click the play icon in the flow’s title bar,
which invokes the planner to automatically activate this
flow. If a successful plan is found, the appliances will be
automatically configured, the play icon will turn green, the
stop icon will turn white, and a bubble will appear to in-
form the user that the flow has been activated. If a plan
cannot be found, a bubble will appear to help the user re-
solve the problem (see Figure 5e). One difficulty with
planning algorithms, such as the GraphPlan algorithm that
Huddle uses, is that they cannot produce useful error mes-
sages when planning fails. Therefore, Huddle first uses two

a)

b)

c)

d)

e)

Figure 5. Screenshots of the Flow-Based Interface in various states of use. a) The blank interface before any sources
or sinks have been dragged onto the interface. b) The interface after the DVD player has been added. Note that only
the available sink appliances, the television and the receiver, are available in the appliance bar at the bottom of the
screen. c) The interface being used to watch a sporting event on television but listening to the play-by-play over the ra-
dio. d) The interface being used during a presentation to manage the display of different sources, with a PowerPoint
slideshow as the current source. e) A dialog bubble from the question/answer interface for resolving planning conflicts.

approximation checks to search for conflicting appliance
variables and active flows, allowing us to produce a more
useful error message.
Our first conflict check searches the dependencies of the
newly specified flow to see if any read-only variables have
values that make activating the new flow impossible. Such
variables usually reflect the physical status of the appli-
ance, which the user can address once informed. For exam-
ple, the DiscIn variable of the DVD player might be set to
false when the user pressed the play icon in our previous
example. If this happened, the system would then ask the
user if they can rectify this problem. Although the current
language for this error message can be somewhat stilted,
we do provide predefined strings for common problems,
such as there being no disc in the DVD player (see Figure
5e).
After we check for variable conflicts, we check to see if
any currently active flows conflict with the new flow. To
perform this check, we examine the dependency informa-
tion associated with the newly specified flow and the de-
pendencies for any active flows, looking for variables that
must have more than one value for the flows to be active
simultaneously. If this situation is found, then we can im-
mediately go back to the user to ask which of the conflict-
ing flows the user wants to use now.
Once we have found that no obvious conflicts exist, we
execute the planning algorithm to find a valid plan for acti-
vating our new flow. If a plan is found, then the system
will carry out that plan to create the right configuration of
variables that will activate the new flow and maintain the
state of any existing flows. The planning algorithm may
still fail however, such as when second-order dependencies
conflict. In our experience, these conflicts are rare, but
when they occur we ask the user to choose between finding
a plan that activates the specified flow and disables the
currently active flows or finding a plan that activates the
specified flow without considering the effects on other
flows. If a plan is found in either case, we prompt the user
again before carrying out the plan to make her aware of
which flows will be deactivated by the new plan.
The flow-based interface also provides interaction to navi-
gate to the other user interfaces provided by Huddle and
the underlying PUC system. In the upper right corner of the
FBI is a “Navigate” pull-down menu, which allows the
user to navigate to the different aggregate user interfaces
that Huddle can generate (discussed next). Double-clicking
on any appliance icon, either in the appliance bar or in a
flow, allows the user to navigate to the full interface for
that individual appliance.

AGGREGATE USER INTERFACES
The FBI provides an interface for users to accomplish
high-level goals within the multi-appliance system, such
“watching a DVD movie” with a home theater. There is
still a need however to provide the user with finer-grain
control of the individual appliance functions. For example,
the user may wish to pause the DVD while it is playing to

take a phone call, or go to the next slide in a PowerPoint
presentation. A user might also discover that the movie is
too dark requiring adjustment of the brightness of the tele-
vision, or that the keystone setting needs to be adjusted on
the projector.
To address these problems, Huddle provides the user with
several Aggregate User Interfaces (AUIs) that combine
functions from each of the appliances in the system to cre-
ate useful task-specific interfaces. Huddle currently can
generate four different AUIs: Active Flow Control, Active
Flow Setup, General Setup, and Merged Functions.
It is important to note that the user also has access at any
time to the full interfaces for each appliance that the PUC
system is already able to generate. Thus it is not our goal to
provide access to the full set of appliance functionality
through the set of aggregate interfaces, but instead to pro-
vide interfaces to meaningful sets of functionality from the
collection of appliances in the system.

 a) b)

 c) d)

Figure 6. Active Flow Controls AUIs generated for
two different flows: a) PowerPoint being shown on a
projector and, b) the VCR1 tape being recorded
onto the VCR2 tape. c) Broadcast television content
being viewed on the television’s screen and using
the television’s internal speakers, and d) the same
broadcast television content being viewed on the
television but with the audio coming from the audio
receiver’s speakers.

Active Flow Controls
The Active Flow Controls AUI combines commonly used
functions that are related to the currently active flows.
Figure 1b and Figure 6 show examples of active flow con-
trol aggregates generated when the active flow is playing a
DVD to the receiver and television, controlling a slideshow
in a presentation room, copying a tape from one VCR to
another, and watching television with the audio coming
from the television or receiver speakers.
Huddle identifies functions to be used in the Active Flow
Controls AUI in two stages. In the first stage, functions are
extracted from the appliance’s specifications that are either
mentioned in the flow dependencies for the currently active
flows, or are noted as being related in the appliance’s con-
tent flow model. In the second stage, these functions are
filtered to select only the most common functions that users
will likely want to manipulate. Huddle uses two heuristics
in the filtering stage because no information is available in
the PUC specification to directly identify the commonly
used functions of an appliance.
The first heuristic is to eliminate any functions associated
with “Setup.” Nearly all specifications contain a high-level
group with the name “Setup” or something similar. This
group will often be identified by the Uniform system [9],
which provides a knowledge base of similarity information
for PUC specifications. Huddle uses Uniform’s mapping
information to identify the Setup group in each appliance
and then filters out any functions that are contained in these
Setup groups.
The second heuristic eliminates any functions that, if used
or modified, would always cause the flow to stop being
active. This eliminates all power functions (which can be
easily accessed elsewhere), the input-select variables from
stereo and television, the VCR/TV functions of the VCRs
in some situations, and a number of other variables that
may be common but would overlap with the functioning of
the FBI. The exceptions to this rule are media control func-
tions, such as play, stop, and pause, which are always in-
cluded. Although the user may deactivate a flow by press-

ing stop or eject, we feel that users would be annoyed if
these functions were not easily available and that users can
easily recover if they use these functions in a way that de-
activates a flow.
Once the set of functions has been decided, the functions
are organized into a list. Functions from the source are
placed first in this list, followed by functions from any sink
appliances, with functions from any pass-through appli-
ances at the end. We use this ordering because it seems that
functions from the end points of a flow are usually the most
relevant to the user. The exceptions to this rule are the vol-
ume and mute functions, which we automatically place at
the top of the generated interface to ensure that they are
easy for users to access. Any functions in this list found to
be functionally similar, either as identified by Uniform or
because they are the same function on a different instance
of the same appliance, are then grouped together in the
final interface. For example, this grouping caused the play
controls for each of the VCRs to be located next to each
other in Figure 6b.
Figure 6c and d illustrate two Active Flow Control aggre-
gates for slightly different flows, watching broadcast tele-
vision with using just the television and watching broadcast
television via both the television and audio receiver’s
speakers. Note that these interfaces at the top are quite
similar, although in Figure 6c the volume slider is control-
ling the television’s volume function where the same slider
in Figure 6d is controlling the receiver’s volume.

Active Flow Setup
The Active Flow Setup AUI combines setup functions that
are related to the currently active flows. Huddle identifies
the functions for this aggregate using the first stage of the
process used for the Active Flow Controls AUI. Unlike for
that earlier aggregate however, the second stage filtering
process for this aggregate takes only functions that are
found within the “Setup” group. This process typically
finds functions that affect the output of the currently active
flows but will be used infrequently, such as the brightness

 a) b)

Figure 7. Two shots of the Active Flow Setup AUI
for the DVD player to receiver and television flow.
Note that the interface is organized by appliance, as
shown by the tabs at the bottom of the screen.

 a) b)

Figure 8. Two shots of the General Setup AUI for
our home theater setup. Note that in both shots, the
tabs at the bottom of the screen represent high-
level concepts within which the functions are organ-
ized by appliance (combo boxes at top).

and contrast controls for the television and the speaker
level controls for the receiver. This AUI will still not in-
clude any controls that cause the flow to stop being active,
however, since those are best controlled using the FBI.
 The Active Flow Setup AUI is organized by appliance,
because we found that a desired setup function was typi-
cally easier to find with this organization. See Figure 5 for
two shots of the Active Flow Setup interface generated for
the flow for the DVD to receiver and television. We origi-
nally tried to organize this aggregate by content type,
which in the case of a home theater would give top-level
groups for audio and video, but this created lower quality
interfaces. The approach worked reasonably for appliances
whose functions could be classified by their place in the
content flow, such as the receiver and television which in
some flows receive only audio and video content respec-
tively. However we found that for appliances which han-
dled both audio and video content that this approach relied
too much on Uniform’s ability to identify sub-groups that
corresponded to Audio and Video. It is possible that this
approach might be viable with improvement to Uniform.

General Setup
The General Setup AUI (see Figure 8) combines setup
functions across all of the appliances that are not related to
any content flow. These functions typically include things
such as parental content restrictions, time functions, soft-
ware upgrade controls, and the configuration of defaults.
The functions for the AUI are extracted by iterating over
the specifications for each of the appliances and eliminat-
ing all of the functions that could be used in the previous
two AUIs. An additional filtering step removes any func-
tions that are not in the “Setup” group.
The General Setup AUI is organized first by any high-level
collections of functions that we can identify as existing on
more than one appliance, and then by appliance. We first
attempt to identify these high-level collections with Uni-
form but also search for any top-level groups within the
Setup groups that may have the same name. Groups with
the same name may not be identified by Uniform because
their contents are not identified as being similar enough.
These groups are often catch-all groups such as “Prefer-
ences,” which have a large variance in the types of func-
tions that they contain.

Merged Functions
There are a few settings across a system of appliances
where a single value should be applied to all appliances
rather than laboriously setting the value on each appliance.
Examples include the time on the clock, the language (e.g.,
English), and the sleep timer (that turns off the appliance
after a selected number of minutes). Other settings that
occur across appliances, however, should not be merged.
For example, it is usually wrong to set the channel of the
VCRs and television to the same value simultaneously or to
set all the devices to be powered on at the same time. Even
setup functions cannot always be combined depending on
the particular function and how similar the functions are

across appliance types. For example, the DVD player and
the television both have a contrast setting, but it would be
inappropriate to set both of them simultaneously.
The Merged Functions AUI handles the small number of
functions that are appropriate to combine (see Figure 9a).
As with the previous aggregates, we use Uniform’s knowl-
edge base to identify similar functions across appliances.
As future work, we plan to explore how the volume func-
tion might be merged across appliances using the flat vol-
ume technique developed by Baudisch et al [1]. While this
work has been shown to apply quite well to volume, it is
unclear whether it would be applicable for other kinds of
settings, such as brightness or contrast.

DISCUSSION AND FUTURE WORK
The most important concept behind the design of Huddle is
its use of a content flow model to help users accomplish
their high-level goals. This approach seems to work well
for the constrained domains of home theaters and presenta-
tion rooms, and we believe that it can be extended to sup-
port many more features than we have discussed here. For
example, with more detailed modeling of content types,
Huddle should not only be able to find content flows for
users’ goals, but also to find the optimal path for the par-
ticular content that the user is viewing. This is a particu-
larly important problem as the types of content within the
home theater grow to encompass numerous high-definition
video and audio standards which may be supported at vary-
ing levels by different appliances and different types of
wires.
A problem that we have been considering is how content
flows can help Huddle understand that the lights need to be
dimmed in order to view a projected PowerPoint presenta-
tion. An extreme solution would be to extend the content
flows all the way to the final content sink at each user’s
eyes and ears, although this would require extensive mod-
eling of each room, its lighting, and the user’s perceptual
capabilities in order to be successful. A more practical ap-
proach may be to provide basic models of which lights and
projectors interact, perhaps with a few “environment con-
tent sinks” for the most important locations in a room that

Figure 9. The Merged Function AUIs generated by
Huddle featuring the clock, language, and sleep
timer functions on a single panel.

can allow Huddle to reason about the interactions of appli-
ances within the environment.
We also believe that the content flow concept will prove
extensible to other appliance domains, such as video-
conferencing systems and even manufacturing processes.
The extensibility of Huddle seems to be limited by the cor-
respondence between the content flows and the tasks that
the user wants to perform. Where there is correspondence,
such as in the scenarios we have considered here, our ap-
proach works well. One scenario where Huddle may not be
effective is in the kitchen, where tasks often center on reci-
pes. It seems that many recipes use the same content flow
through appliances, which suggests that the content flow
may not be descriptive enough to generate useful task-
based interfaces for the appliances.
There are two important problems of multi-appliance sys-
tems that Huddle does not currently address: helping with
the initial wiring of the system and trouble-shooting prob-
lems when they occur. Both features could be added to
Huddle using Roadie’s [4] approach, which relies on a
planning system similar to Huddle’s. Some of the wiring
problems could also be addressed in a tool that helps users
specify the diagram that Huddle needs to build its system-
wide content flow model. This tool could also help users
determine how to best wire their system to support all the
flows that they expect to use. It is worth noting that Roadie
takes a different approach to configuration, by including
wiring instructions in the plans that it generates for each
user task as the user is using the system. This ensures that
users are always able to perform a task if it is possible with
some configuration of their system, but it seems better to
perform this kind of analysis at setup time since, in our
experience, it is unlikely that users will want to rewire their
system on a regular basis.
Huddle currently generates four different kinds of aggre-
gate user interfaces, and we plan to explore both improving
our existing set and building new kinds of aggregate inter-
faces. A promising direction that we intend to explore is a
usage-based aggregate interface, perhaps based on the
ideas of Omojokun et al [10]. We are also interested in
combining a usage-based aggregate with information about
the user’s context to provide the right function at the right
time.
We are also planning to conduct a formal evaluation of
Huddle’s interfaces. We have already done some informal
evaluations with prototypes of the Flow-Based Interface,
which we used to improve the final version that is de-
scribed in this paper. We are currently planning a user test
in which we will put users in front of an existing home
theater system and compare their interactions between the
existing remote controls and Huddle.
A large part of the problem discussed in this paper arises
from multiple appliances being connected together, which
requires the user to interact with multiple interfaces to ac-
complish a single task. An obvious solution here is to inte-
grate the appliances into a single monolithic appliance for

which an interaction designer can carefully construct a
good user interface. In fact, this solution can be seen for
some consumer electronics, such as for shelf stereos which
integrate an amplifier with a CD player, radio tuner, and
other audio devices. The problem with this approach is that
it does not allow for expandability and innovation. If all
audio appliances had been integrated ten years ago, then
today there would be no place for devices like the iPod.
Huddle allows users to easily interact with systems of ap-
pliances, which enables appliance manufacturers to pursue
the design of new appliances that may be added to these
systems.

CONCLUSIONS
Huddle demonstrates that powerful and general home thea-
ter interfaces can be created by combining interaction de-
sign, planning algorithms, and automatic interface genera-
tion techniques. This work demonstrates that automatic
interface generation systems can extend the capabilities of
human designers by adding features that would be difficult
or impossible to implement by hand.

ACKNOWLEDGMENTS
This work was conducted as a part of the Pebbles project, and was
funded in part by grants from NSF, Microsoft, and General Mo-
tors. The National Science Foundation funded this work under
Grant No. IIS-0534349. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the National Sci-
ence Foundation.

REFERENCES
1. Baudisch, P., Pruitt, J., and Ball, S. Flat Volume Control: Improving

Usability by Hiding the Volume Control Hierarchy in the User Inter-
face, in CHI'2004: 255-262.

2. Blum, A. and Furst, M. Fast Planning Through Planning Graph
Analysis, in International Joint Conference on Artificial Intelligence
(IJCAI 1997). 1997: 1636-1642.

3. Foltz, M.A. Ligature: Gesture-Based Configuration of the E21 Intelli-
gent Environment, in MIT Student Oxygen Workshop. 2001

4. Lieberman, H. and Espinosa, J. A Goal-Oriented Interface to Con-
sumer Electronics using Planning and Commonsense Reasoning, in
Intelligent User Interfaces. 2006: 226-233.

5. Logitech, “Harmony Remote Control Home Page,” 2006.
http://www.logitech.com/harmony/.

6. Mori, G., Paterno, F., and Santoro, C., Design and Development of
Multidevice User Interfaces through Multiple Logical Descriptions.
IEEE Transactions on Software Engineering, 2004. 30(8): 1-14.

7. Newman, M.W., Izadi, S., Edwards, W.K., Sedivy, J.Z., and Smith,
T.F. User Interfaces When and Where They are Needed: An Infra-
structure for Recombinant Computing, in UIST'2002: 171-180.

8. Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris, T.K.,
Rosenfeld, R., and Pignol, M. Generating Remote Control Interfaces
for Complex Appliances, in UIST'2002: 161-170.

9. Nichols, J., Myers, B.A., and Rothrock, B. UNIFORM: Automatically
Generating Consistent Remote Control User Interfaces, in CHI'2006:
611-620

10. Omojokun, O., Pierce, J.S., Isbell Jr., C.L., and Dewan, P., Comparing
End-User and Intelligent Remote Control Interface Generation. Per-
sonal and Ubiquitous Computing, 2006. 10(2-3): 136-143.

11. Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P., T. Winograd.
ICrafter: A service framework for ubiquitous computing environ-
ments, in UBICOMP 2001: 56-75.

