Personal
Universal
Controller

Problem

How can we automatically
generate remote control
interfaces for everyday
appliances on a handheld
computer?

Process

1. Manually construct interfaces
for several appliances by hand
and evaluate them with users.

2. Analyze the interfaces to
understand what appliance
information was needed to
construct them.

Design a language for describ-
ing an appliance that includes
all information necessary for
creating an interface.

Build an interface generator
that reads a file written in the
language and automatically
generates a remote control
interface.

Acknowledgements

This work was conducted as part of the Pebbles project, directed by
Brad A. Myers, in collaboration with Michael Higgins, Joe Hughes,

and Peter Lucas of MAYA Design. It was funded by grants from NSF,

Microsoft, and the Pittsburgh Digital Greenhouse, and equipment
grants from Symbol Technologies, Hewlett-Packard, and Lucent.
The National Science Foundation funded this work through a
Graduate Research Fellowship and under Grant No. IIS-0117658.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not
necessarily reflect those of the National Science Foundation.

Informing Automatic Generation of Remote Control Interfaces with Human Designs

Jeffrey Nichols + jeffreyn@cs.cmu.edu « Carnegie Mellon University « Human Computer Interaction Institute * http://www.cs.cmu.edu/~pebbles/puc/

human
designs

7] AIWA Shelf Stereo

Y olurnes:

] ==||=| 1550 | = ||==

Freset: | L

a0 |4|

Help with &nt...

@ Rec Tape | Radio | Videa | LD | MD

Options Recording Help

E.] ATWA Shelf Stereo

Poir Mode: |5ing|e Disc - |

Wolume: [] Repaat [] random

F

Dissc: Track:

Flay Pause| | Shop

= |« [l

|<= <= > =z

@ e [Radio| Video| D [ND |

Options Recording Help

] AIwaA Shelf Stereo

Powr

Deck: |Ta|:-e = v|

YWolurme:

Mode: |Single Side v|

e

< Play | | Play = | [Pause| | Stop

Fewind Fast-Forward

1]

5 Iz Dalby Moise Reduction

@Rec|’ Tape| Fadio | "-.-"ileD| CD | rD |

Help E|L

EA|AT&T 1825 Telephone 4:57p

Speaker |pha:
willrie:

Cpeed Dial... Speaker Cn

F

BC| DEF

2
5
8

GHI| JKL

LIl |
~[&) =

PRS] TUY

0

| 0O

-

#*

4

Dialing | Meszages | Setup

Help Metwork

EX]ATRT 1825 Telephone 5:09p

?f;uanlizr Mailboxes: [#1 | #2 | #3 | #4

M Wed 03:20 PM
H Thu 0z2:01 PM
M Thu G3:3& PM

[

==l

Del mea| | == | Play

Rl

Delete &l | | Play Mew | | Preview

3
Dialing Mewages| Selup |

Help Metwork E|‘-

Analysis of Human Designs

We created interfaces for an AIWA CX-NMT70 shelf-stereo and
an AT&T 1825 office telephone on a Microsoft PocketPC. We
then analyzed these interfaces to understand the functional
information that was needed for their creation. Our specification
language includes the information that we found was needed to
create remote control interfaces.

State Variables and Commands

Any manipulable appliance element can be represented by either
a state variable or a command. Each state variable has a type
that tells the interface generator how it can be manipulated.
Some elements, such as the seek button on a radio, must be
represented as commands, because their result cannot described
as a deterministic change to a variable. Today’s remote controls
could be generated by a specification that contained only
commands.

Type Information

The type information of each state variable tells the interface
generator how the user may manipulate that variable. Boolean,
enumerated, numeric, and string types are currently available.

Labeling Information

Each component must be labeled so that users can distinguish
elements. Different form factors require different kinds of labels.
Each semantic label for a variable or command in our specifica-
tion language contains several strings that may be used based
on available space.

Group Tree

Most interfaces can be described by a tree, where each leaf is
a component and each branch is a panel. Our language uses
a similar structure to suggest to the interface generator which
variables and commands are most related to others.

Dependency Information

Enabling and disabling components is very useful for guiding
users to available functionality. Our language contains formulas
that specify when a variable or command is available based upon
the values of other state variables. Equal-to, greater-than, and
less-than relations are supported, and multiple relations may be
combined with the logical AND and OR operations. We have also
discovered that this information can be useful for determining
the panel structure of an interface.

specification
language

<?xm version="1.0" encodi ng="UTF-8"?>

<spec nane=" Audi ophase 5 CD Stereo”>
<gr oupi ngs>
<gr oup>
<state name="Power State” priority="10">
<type nanme="OnOf Type” >
<val ueSpace>
<bool ean/ >
</ val ueSpace>
<val uelLabel s>
<map i ndex="fal se”>
<| abel >O f </ | abel >
</ map>
<map i ndex="true”>
<| abel >On</ | abel >
</ map>
</ val ueLabel s>
</type>

<| abel s>
<| abel >St ereo Power </ | abel >
<| abel >Power </ | abel >
<| abel >Powr </ | abel >
<| abel >Pwr </ | abel >
</ | abel s>
</ st at e>

<gr oup>
<active-if>
<equal s st at e="Power St at e” >t r ue</ equal s>
</active-if>

<| abel s>

<| abel >Vol une</ | abel >
<| abel >Vol </ | abel >
</ | abel s>

<command nane=" Vol unmeUp” priority="10">
<| abel s>
<| abel >Vol une Up</I abel >
<| abel >Vol . Up</| abel >
<| abel >*</ | abel >
</l abel s>
</ command>

<command nane=" Vol uneDn” priority="10">
<| abel s>
<| abel >Vol une Down</| abel >
<| abel >Vol . Down</| abel >
<| abel >Down</ | abel >
<| abel >v</ | abel >
</ | abel s>

</ command>

</ gr oup>

<gr oup>
<active-if>
<equal s st at e="Power St at e” >t r ue</ equal s>
</active-if>

<st at e nanme="ModeSt at e” >
<type>
<val ueSpace>
<enurmer at ed>
<items>4</itens>
</ enurmrer at ed>
</ val ueSpace>
<val ueLabel s>
<map index="1">
<| abel >Tape</| abel >
</ map>
<map i ndex="2">
<| abel >CD</ | abel >
</ map>
<map i ndex="3">
<| abel >AUX</ | abel >
</ map>
<map i ndex="4">
<| abel >Tuner </ | abel >
</ map>
</ val ueLabel s>
</type>

<| abel s>
<| abel >Qut put Mode</ | abel >
<| abel >Mbde</ | abel >
</ | abel s>
</ st at e>

Interface Generation

We created an interface generator for the Compaq iPAQ using the
PersonalJava API and Insignia’s Jeode VM. This generator takes a
file written with our specification language and creates interfaces
that can be used to control actual appliances.

Panel Structure

Components may be placed across different panels, depending
on how closely they are grouped and what they depend upon.
Two sets of components may be placed on overlapping panels if
dependency information shows that the sets are never active at
the same time. This happens if the appliance has modes.

Column and Row Layout

Within a panel, components are typically placed in a column,
but more complex arrangements may be created if particular
patterns are found in the group tree. For example, if only two
components are found in a group, then those components will be
placed in a row together.

Component Choice

The interface component for a state variable or command is
chosen by a decision tree. Commands are always represented
by buttons, but state variables are represented differently based
upon type, writeability, and other features.

Label Choice

Each semantic label in the specification file may be represented
by multiple strings. The interface generator currently uses the
longest string available that will fit in the space alotted by the rest
of the generation process.

Future Work

We are currently working to extend our specification language
and improve our automatically generated layouts.

Specification Language

e The specification language does not currently support lists,
which are used by many appliances.

e Information must be added to the specification to support
generating speech interfaces.

Interface Layout

e QOur interface layout algorithms need some knowledge of
standard component arrangements. We need better methods
of including this information in our language

e Our layout algorithm must deal appropriately with situations
where there is not enough space. We are considering using
backtracking, where previous decisions are re-thought
in the context of newly discovered constraints.

automatic
designs

M=

PUS Devices

Fower Sealk: = I =

Valume: Band: I.&m

L

Lp =l 1067

=
Do Fresets: I*IIIIE.T Ll

F #-Bass

Tape | D | Al | Turer

=T
PUC Devices
F awrer = |] | "
volume: Disc: |1 ~|
Louder
Jomer Track 16
[x-Bass =
[Random
Repeat |Of d
Tape | CD ‘ AL [Tuner
N [=[EY
PUC Devices
Fower Tape not controllable.
Walurne:
Wol, Lip
“al. Do
[%-Bass

Tape | D | Al | Turer

=10l x|
FUS Devices
Global Off O
All Lights ©n Off
All Lights Off Dim
Brighten
Lamp | Cwerhead Lights
1o x|
PUZ Devices
Foweer; E |] I !
IDﬂ’ *i Fandam Sang
Previous Song

song:;

Arist.

Album:

Flaylist:

MNewt Sond:
Play Mawxt Song |

Song List | Player |

