
and improve our automatically generated layouts.

which are used by many appliances.

generating speech interfaces.

Our interface layout algorithms need some knowledge of
standard component arrangements. We need better methods
of including this information in our language

Our layout algorithm must deal appropriately with situations
where there is not enough space. We are considering using
backtracking, where previous decisions are re-thought
in the context of newly discovered constraints.

<?xml version=”1.0” encoding=”UTF-8”?>

<spec name=”Audiophase 5 CD Stereo”>
 <groupings>
 <group>
 <state name=”PowerState” priority=”10”>
 <type name=”OnOffType”>
 <valueSpace>
 <boolean/>
 </valueSpace>
 <valueLabels>
 <map index=”false”>
 <label>Off</label>
 </map>
 <map index=”true”>
 <label>On</label>
 </map>
 </valueLabels>
 </type>

 <labels>
 <label>Stereo Power</label>
 <label>Power</label>
 <label>Powr</label>
 <label>Pwr</label>
 </labels>
 </state>

 <group>
 <active-if>

 <equals state=”PowerState”>true</equals>
 </active-if>

 <labels>
 <label>Volume</label>

 <label>Vol</label>
 </labels>

 <command name=”VolumeUp” priority=”10”>
 <labels>
 <label>Volume Up</label>
 <label>Vol. Up</label>

 <label>^</label>
 </labels>
 </command>

 <command name=”VolumeDn” priority=”10”>
 <labels>

 <label>Volume Down</label>
 <label>Vol. Down</label>
 <label>Down</label>
 <label>v</label>

 </labels>
 </command>
 </group>

 <group>
 <active-if>

 <equals state=”PowerState”>true</equals>
 </active-if>

 <state name=”ModeState”>
 <type>
 <valueSpace>
 <enumerated>
 <items>4</items>
 </enumerated>
 </valueSpace>
 <valueLabels>
 <map index=”1”>
 <label>Tape</label>
 </map>
 <map index=”2”>
 <label>CD</label>
 </map>
 <map index=”3”>
 <label>AUX</label>
 </map>
 <map index=”4”>
 <label>Tuner</label>
 </map>
 </valueLabels>
 </type>

 <labels>
 <label>Output Mode</label>
 <label>Mode</label>
 </labels>
 </state>

How can we automatically
generate remote control
interfaces for everyday
appliances on a handheld
computer?

This work was conducted as part of the Pebbles project, directed by
Brad A. Myers, in collaboration with Michael Higgins, Joe Hughes,
and Peter Lucas of MAYA Design. It was funded by grants from NSF,
Microsoft, and the Pittsburgh Digital Greenhouse, and equipment
grants from Symbol Technologies, Hewlett-Packard, and Lucent.
The National Science Foundation funded this work through a
Graduate Research Fellowship and under Grant No. IIS-0117658.

expressed in this material are those of the author and do not

1. Manually construct interfaces
for several appliances by hand
and evaluate them with users.

2. Analyze the interfaces to
understand what appliance
information was needed to
construct them.

3. Design a language for describ-
ing an appliance that includes
all information necessary for
creating an interface.

4. Build an interface generator

language and automatically
generates a remote control
interface.

We created interfaces for an AIWA CX-NMT70 shelf-stereo and

then analyzed these interfaces to understand the functional

language includes the information that we found was needed to
create remote control interfaces.

Any manipulable appliance element can be represented by either
a state variable or a command. Each state variable has a type
that tells the interface generator how it can be manipulated.
Some elements, such as the seek button on a radio, must be
represented as commands, because their result cannot described
as a deterministic change to a variable. Today’s remote controls

commands.

The type information of each state variable tells the interface
generator how the user may manipulate that variable. Boolean,
enumerated, numeric, and string types are currently available.

Each component must be labeled so that users can distinguish
elements. Different form factors require different kinds of labels.

tion language contains several strings that may be used based
on available space.

Most interfaces can be described by a tree, where each leaf is
a component and each branch is a panel. Our language uses
a similar structure to suggest to the interface generator which
variables and commands are most related to others.

Enabling and disabling components is very useful for guiding
users to available functionality. Our language contains formulas
that specify when a variable or command is available based upon
the values of other state variables. Equal-to, greater-than, and
less-than relations are supported, and multiple relations may be
combined with the logical AND and OR operations. We have also
discovered that this information can be useful for determining
the panel structure of an interface.

Components may be placed across different panels, depending
on how closely they are grouped and what they depend upon.
Two sets of components may be placed on overlapping panels if
dependency information shows that the sets are never active at
the same time. This happens if the appliance has modes.

Within a panel, components are typically placed in a column,
but more complex arrangements may be created if particular
patterns are found in the group tree. For example, if only two
components are found in a group, then those components will be
placed in a row together.

The interface component for a state variable or command is
chosen by a decision tree. Commands are always represented
by buttons, but state variables are represented differently based
upon type, writeability, and other features.

by multiple strings. The interface generator currently uses the

of the generation process.

We created an interface generator for the Compaq iPAQ using the
PersonalJava API and Insignia’s Jeode VM. This generator takes a

that can be used to control actual appliances.

