
Informing Automatic Generation of
Remote Control Interfaces with Human Designs

Jeffrey Nichols
Human Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213-3891 USA
jeffreyn@cs.cmu.edu

http://www.cs.cmu.edu/~jeffreyn/

ABSTRACT
Embedded processors are making it possible for common
appliances, such as cable boxes, microwaves and fax ma-
chines, to provide even more functionality. Unfortunately,
as these appliances become more complex, their interfaces
are also becoming harder to use. At the same time, more
people are carrying hand-held computerized devices that
can communicate. We envision a future in which people
will use their handhelds to communicate with and control
common appliances in their environment. In this work we
designed a specification language and built an automatic
interface generator using lessons learned from analyzing a
set of hand-created interfaces.
Keywords
Handheld computers, remote control, appliances, Personal
Digital Assistants (PDAs), Pebbles
INTRODUCTION
We are exploring how handheld devices can be used to
improve the interfaces for common home and office appli-
ances using an approach we call the personal universal
controller (PUC). The PUC is similar in concept to the uni-
versal remote controls that are available today, with two
major differences: 1) it communicates with appliances us-
ing a two-way protocol and 2) it is self-programming. The
PUC communicates with the appliance that the user would
like to control, downloads information about the appli-
ance’s functions, and automatically generates an interface.

Two things are needed to create this vision of an automati-
cally generated remote control interface: 1) a specification
language that can enumerate the functions of the appliance,
and 2) an interface generator that can parse the specifica-
tion language and construct a usable interface from it. We
are taking a multi-step approach to realizing these two
goals. First, we manually constructed several interfaces by
hand and evaluated them for usability [5]. Next, we ana-
lyzed these interfaces in order to understand what informa-
tion about the appliance was needed to build them. Here,

we describe what our analysis uncovered and discuss how
this was used in the creation of our specification language
and interface generator.
HAND-DESIGNED INTERFACES
We designed interfaces for two different appliances, an
AIWA CX-NMT70 shelf-stereo and an AT&T 1825 office
telephone, on two handheld computer platforms, Palm and
PocketPC. We selected these two appliances because they
are both multi-functional; the stereo has an integrated radio,
tape, and CD player, and the telephone has an integrated
answering machine. To be sure that our hand-designed in-
terfaces for these appliances were acceptable for analysis,
we conducted an evaluation comparing our interfaces to the
physical interfaces provided by the manufacturer. We
found that subjects using our interfaces performed tasks in
half the time making half as many errors as compared to
the manufacturer’s interfaces [5].
INTERFACE ANALYSIS
Next we analyzed our hand-designed interfaces to under-
stand the functional information that was needed for their
creation. Clearly the PUC requires information about what
it can manipulate on the appliance. We found that all the
functions of an appliance can be represented by commands
and state variables. For example, on a radio, the station
would be represented by a variable with a numeric type.
When the remote control wants to change the value of the
station variable, it tells the appliance what the new value
should be. The tuning function can be inferred from the
variable because the interface generator knows how to ma-
nipulate a numeric variable. The seek function however,
which tells the appliance to scan the radio spectrum until a
new station is found, cannot be inferred from the radio sta-
tion variable. Instead, this function must be represented by
a command, because the knowledge needed to find the next
clear channel on the spectrum cannot be specified at the
time the interface is created (reception will surely change,
etc.). The remote control must ask the radio to invoke the
seek function, instead of telling it what the new station will
be. The appliance would update the station variable on the
PUC once it finds the next station.

The two-way communication feature of the PUC allows it
to know when a particular function is unavailable. This
makes interfaces easier to use, because widgets correspond-
ing to a disabled function can be grayed-out. We have
found that we can derive formulas that specify when a
function will be disabled depending on the values of other
appliance variables. This dependency information is useful
for determining the structure of a remote control interface.
While this is true for most interfaces, it seems to be espe-
cially important for remote controls, which tend to have
different modes with different sets of properties. Our hand-
designed interfaces use dependency knowledge to make
very concise screens with overlapping panels of controls.
When the user picks a particular mode, the panel with the
controls for that mode is shown while the controls for other
modes are hidden. The use of dependencies is one of the
novel techniques that our generator uses to construct user
interfaces.

SPECIFICATION LANGUAGE
Before an interface can be generated, an appliance specifi-
cation is needed. Our specification language is XML-
based, and includes all of the information that we found in
our analysis of the hand-designed interfaces. It also in-
cludes information for handling other problems that we did
not experience with our hand-designed interfaces but an-
ticipated encountering with the interface generator.

The generator must be equipped to handle different types of
displays, including devices with different sizes than the
hand-held platforms we looked at. Although dependency
information is very useful for determining the structure of
an interface, it may not be sufficient if a mode has many
properties and the screen only has space for a small number
of controls. To handle this difficulty, the specification in-
cludes a group tree, a hierarchical grouping of the state
variables and commands that make up the functions of an
appliance. Variables that must be placed together in the
interface will be leaves of the same node, whereas controls
that are not related will not be found in the same branch. A
priority can also be attached to each variable to help the
generator understand which elements are more commonly
used. The interface generator can inspect the group tree to
determine how to split the controls into sub-groups. For
example, less important widgets might be placed into a
dialog box.
INTERFACE GENERATOR
The interface generator takes a specification written in our
language and creates an interface from it. The current ver-
sion is implemented in Java 1.1.8 and runs on the Compaq
iPAQ handheld device as well as desktop machines. The
generator currently creates structure from dependency in-
formation and then assigns controls to variables and com-
mands based upon a decision tree algorithm [2]. Figure 1
shows three different screens of an interface generated by
our system for a shelf stereo appliance. In this stereo, all

functions depend on the power being on. The left-most
screen shows the interface when the power is off. The two
screens on the right show the state of the interface in the
Radio and CD playback modes. The top halves of these
two screens show mode-independent controls and the bot-
toms show different sets of controls that are appropriate for
the mode shown.

FUTURE WORK
Work remains to be done on our interface generator. Spe-
cifically, we have not yet handled situations where there are
too many controls to fit on a screen. We are also working
on the aesthetic issues of interface design by exploring al-
gorithms that can iteratively refine designs according to
aesthetic properties. Simulated annealing or other iterative
hill-climbing methods may be a part of our approach.
ACKNOWLEDGMENTS
This work was conducted as a part of the Pebbles project [4], directed by
Brad A. Myers. It was funded by grants from NSF, Microsoft and the
Pittsburgh Digital Greenhouse, and equipment grants from Symbol Tech-
nologies, Hewlett-Packard, and Lucent. The National Science Foundation
funded this work through a Graduate Research Fellowship and under
Grant No. IIS-0117658. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author and do not
necessarily reflect those of the National Science Foundation.

REFERENCES
1. Brouwer-Janse, M.D. et al. “Interfaces for consumer products:

‘how to camouflage the user?’” CHI’1992: Human factors in
computing systems. Monterey, CA. May 3-7, 1992. pp. 287-
290.

2. de Baar, D., et al. "Coupling Application Design and User
Interface Design," CHI'1992, May 3-7, 1992. Monterey, CA.
pp. 259-266.

3. Haartsen, J. et al. “Bluetooth: Vision, Goals, and Architec-
ture,” ACM Mobile Computing and Communications Review.
1998. 2(4). pp. 38-45. Oct. www.bluetooth.com

4. Myers, B.A. “Using Hand-Held Devices and PCs Together,”
Communications of the ACM. November, 2001. 44(11): pp.
34-41.

5. Nichols, J. “Using Handhelds as Controls for Everyday Appli-
ances,” CHI’2001 Extended Proceedings. Seattle, WA. March
31-April 5, 2001. pp. 443-444.

(a) (b) (c)

Figure 1. Three screens of a stereo interface created by our gen-
erator software. a) The screen shown when the power is off. b)
The screen shown when the power is on and the radio is being
used. c) The screen shown when the power is on and the CD
player is being used.

