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Home Location Identification of Twitter Users

JALAL MAHMUD, JEFFREY NICHOLS, and CLEMENS DREWS, IBM Research – Almaden

We present a new algorithm for inferring the home location of Twitter users at different granularities,
including city, state, time zone, or geographic region, using the content of users’ tweets and their tweeting
behavior. Unlike existing approaches, our algorithm uses an ensemble of statistical and heuristic classifiers
to predict locations and makes use of a geographic gazetteer dictionary to identify place-name entities. We
find that a hierarchical classification approach, where time zone, state, or geographic region is predicted first
and city is predicted next, can improve prediction accuracy. We have also analyzed movement variations of
Twitter users, built a classifier to predict whether a user was travelling in a certain period of time, and use
that to further improve the location detection accuracy. Experimental evidence suggests that our algorithm
works well in practice and outperforms the best existing algorithms for predicting the home location of
Twitter users.
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1. INTRODUCTION

Recent years have seen a rapid growth in micro-blogging1 and the rise of popular
micro-blogging services such as Twitter. As of March 21, 2013, 400 million tweets were
being posted every day.2 This has spurred numerous research efforts to mine this data
for various applications, such as event detection [Sakaki et al. 2010; Agarwal et al.
2012], epidemic dispersion [Lampos et al. 2010], and news recommendation [Phelan
et al. 2009]. Many such applications could benefit from information about the location
of users, but, unfortunately, location information is currently very sparse. Less than 1%
of tweets are geo-tagged,3 and information available from the location fields in users’

1http://www.businessinsider.com/nobody-blogs-anymore-theyres-all-microblogging-2011-2.
2http://articles.washingtonpost.com/2013-03-21/business/37889387_1_tweets-jack-dorsey-twitter.
3http://thenextweb.com/2010/01/15/Twitter-geofail-023-tweets-geotagged/.
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profiles is unreliable at best. Cheng et al. found that only 26% of Twitter users in a
random sample of more than 1 million users reported their city-level location in their
profiles, and only 0.42% of the tweets in their dataset were geo-tagged [Cheng et al.
2010]. Hecht et al. report that only 42% of Twitter users in their dataset reported valid
city-level locations in their profile, and 0.77% of the tweets were geo-tagged [Hecht
et al. 2011].

In this article, we aim to overcome this location sparseness problem by developing
algorithms to predict the home, or primary, locations of Twitter users from the content
of their tweets and their tweeting behavior. Ultimately, we would like to be able to
predict the location of each tweet, and our work to predict a user’s home location
is a key step toward achieving that goal. This is because single tweets rarely contain
enough information by themselves to reliably infer a location. Knowing the user’s home
location gives an important clue to the possible location of a tweet, and we expect in
the future that this information will be combined with other inferred information, such
as the likelihood that the user is traveling (which we also explore briefly here), to infer
a location for a single tweet.

Our goal is to predict home location at the city-level, although we also examine the
possibility of predicting at other larger levels of granularity, such as state, time zone,
and geographic region. The benefit of developing these algorithms is twofold. First, the
output can be used to create location-based visualizations and applications on top of
Twitter. For example, a journalist tracking an event on Twitter may want to know which
tweets are coming from users who are likely to be in the location of that event versus
tweets coming from users who are likely to be far away. As another example, a retailer
or a consumer products vendor may track trending opinions about their products and
services and analyze differences across geographies. Second, our examination of the
discriminative features used by our algorithms suggests strategies for users to employ
if they wish to micro-blog publicly but not inadvertently reveal their location.

Our research is motivated by a variety of previous work on home location inference
from tweets [Eisenstein et al. 2011; Hecht et al. 2011; Cheng et al. 2010; Chang et al.
2012; Chandar et al. 2011; Kinsela et al. 2011]. A few also attempt to predict the home
location of users at the city-level [Cheng et al. 2010; Chang et al. 2012; Chandar et al.
2011; Kinsela et al. 2011]. City-level location detection is more challenging than detect-
ing location at a higher granularity such as state or country. Cheng et al. [2010], Chang
et al. [2012], and Chandar et al. [2011] reported city-location detection accuracy using
an approximate metric, where a prediction is deemed correct if it is within 100 miles
of the actual city location. Using such a relaxed accuracy metric, the best city-location
detection accuracy is reported as approximately 50% [Cheng et al. 2010; Chang et al.
2012]. On the other hand, Kinsela et al. [2011] reported 32% (exact) accuracy for city-
location detection. We improve on these results in our work.

In particular, we make the following contributions:

• An algorithm for predicting the home location of Twitter users from tweet contents,
tweeting behavior (volume of tweets per time unit), and external location knowledge
(e.g., dictionary containing names of cities and states and location-based services
such as Foursquare4). Our algorithm leverages explicit references of locations in
tweets (such as mentions of cities or states within the tweets), but still works with
reduced accuracy when no such explicit references are available. Our algorithm uses
an ensemble of several classifiers.

• An algorithm for predicting locations hierarchically using time zone, state, or geo-
graphic region as the first level and city as the second level. Our approach has the

4http://www.foursquare.com/.
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promise to be used as an infrastructure for more granular location predictions in the
future.

• An evaluation demonstrating that our algorithm outperforms the best existing algo-
rithms for home location prediction from tweets. Our best method achieves accuracies
of 64% for cities, 66% for states, 78% for time zones, and 71% for regions when trained
and tested using a dataset consisting of 1.52 million tweets from 9,551 users from
the top 100 US cities. We also demonstrate using the dataset of Cheng et al. [2010]
that our best method outperforms their method for users’ city-level home location
prediction.

• An analysis of movement variations of Twitter users and correlation with location
prediction, which confirms our hypothesis that locations are less accurately pre-
dictable for frequently traveling users. Based on the analysis, we present an algo-
rithm for detecting traveling users and use the result of the algorithm to improve
the location prediction accuracy. When users identified as traveling are eliminated,
location prediction accuracy improves to 68% for cities, 70% for states, 80% for time
zones, and 73% for regions.

In the remainder of this article, we discuss related work, our dataset, a formalization
of the location estimation problem, our location classification approaches, ensemble
approaches, and an evaluation of our algorithms. Then, we present our analysis of
movement and location prediction. Finally, we conclude the paper with a discussion of
future research.

2. RELATED WORK

Our research is related to a variety of prior work in the following areas:

2.1. Content-based Location Estimation from Tweets

A number of algorithms have been proposed to estimate the home location of
Twitter users using content analysis of tweets [Eisenstein et al. 2011; Hecht et al.
2011; Cheng et al. 2010; Chang et al. 2012; Chandar et al. 2011; Kinsela et al. 2011].
One commonality among those methods is that they build probabilistic models from
tweet content.

Eisenstein et al. [2011] built geographic topic models to predict the location of Twitter
users in terms of regions and states. They reported 58% accuracy for predicting regions
(four regions) and 24% accuracy for predicting states (48 continental US states and
the District of Columbia). Hecht et al. [2011] built Bayesian probabilistic models from
words in tweets for estimating the country- and state-level location of Twitter users.
They used location information submitted by users in their Twitter profiles, resolved
via the Google geo-location API, to form the ground truth of a statistical model for
location estimation. They were able to get approximately 89% accuracy for predicting
countries (four countries), but only 27% accuracy for predicting states (50 states in the
United States). The higher accuracy reported for predicting country was largely due
to the uneven distribution of countries in their dataset, where 82% users were from
the United States, and hence a US-only predictor could also achieve 82% accuracy for
predicting countries using that dataset.

City-level location estimation is more challenging than location estimation at higher
granularities, such as states or countries, because the number of cities in a typical
dataset is often much larger than the number of states, regions, or countries. City-
level home location estimation is described in Cheng et al. [2010], Chang et al. [2012],
Chandar et al. [2011], and Kinsela et al. [2011].

Cheng et al. [2010] describe a city-level location estimation algorithm that is based on
identifying local words (such as “red sox” is local to “Boston”) from tweets and building
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statistical predictive models from them. However, their method requires a manual
selection of such local words for training a supervised classification model. Although
they report approximately 51% accuracy using their approach, their accuracy metric is
relaxed such that the actual city could be anywhere within 100 miles from the predicted
city. When an exact city-level prediction was required, accuracy dropped to less than 5%.
Chandar et al. [2011] described location estimation using the conversation relationship
of Twitter users in addition to the text content used in the conversation. They used
a subset of the dataset collected by Cheng et al. [2010] and reported 22% accuracy in
correctly predicting city-level locations within 100 miles of actual city location.

More recently, Chang et al. [2012] described yet another content-based location de-
tection method using Gaussian Mixture Model (GMM) and the Maximum Likelihood
Estimation (MLE). Their method also eliminates noisy data from tweet content using
the notion of nonlocalness and geometric localness. Their approach selected local words
using an unsupervised approach and achieved approximately 50% accuracy in predict-
ing city location within 100 miles of actual city location, which is comparable to Cheng
et al. [2010].

Cheng et al. [2010], Chandar et al. [2011], and Chang et al. [2012] reported
city-location detection accuracy using an approximate metric (e.g., accuracy within
100 miles). However, Kinsela et al. [2011] reported location detection at various gran-
ularities using an exact accuracy metric (whether the detected location matches the
actual location) using a language modeling approach to build models of locations. Their
algorithm can predict the location of a tweet (from which location the tweet originated),
as well as the location of a Twitter user when her tweets are aggregated for a given
period. For building the language models of locations, they used geo-tagged tweets
originating from those locations. For predicting tweet-level location, they achieved
53% accuracy for country level, 31% accuracy at state level, 30% accuracy at city level,
and 14% accuracy at zip code level. For user-level location prediction, accuracies are
76% for country, 45% for state, 32% for city, and 15% for zip code. In this work, we do
not predict location at the zip code level; however, our accuracies for predicting location
at higher granularities are better than the accuracies reported by Kinsela et al. [2011].

Our work makes use of some these findings while also going further. In particular,
our content-based statistical classifier also uses a Bayesian model of local word dis-
tributions to predict location, similar to Hecht et al. [2010] and Cheng et al. [2011].
This classifier is just one of several that we use in our ensemble, however, and we have
improved classification further by using a hierarchy of classifiers that predict location
at different granularities. In terms of accuracy, we experimentally demonstrate that
our algorithm achieves higher accuracy for detecting states, regions, and cities than do
existing algorithms. Previous work did not consider classifying the time zone of a user,
which we have added in our work. Our behavior-based time zone classifier uses novel
temporal behavior-based features not used by any existing work. We have also experi-
mentally compared the performance of our algorithm for city-level location prediction
with that of Cheng et al. [2010] using their dataset.

2.2. Content-based Location Extraction from Tweets

Content-based methods have also been used to determine the geo-location of a tweet
or to extract location information from tweets.

Dalvi et al. [2012] studied the problem of matching a tweet to an object, where the
object is taken from a list of objects in a given domain (e.g., restaurants). They assume
that the geo-location of such objects is already known. Their model utilizes such
geographic information using the assumption that the probability of a user tweeting
about an object depends on the distance between the user’s location and the object’s
location. Such matching can also geo-locate tweets and infer the present location of a
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user based on the tweets about geo-located objects. Along the same line, Li et al. [2011]
describe a method to associate a single tweet to points of interests, such as a
restaurant, shop, or park, by building a language model for each point of interest and
using standard techniques such as KL-Divergence. This is dependent on availability
of enough tweets for each point of interest and is different from estimating the home
location of a user.

Recently Agarwal et al. [2012] describe a dictionary-based method for extracting
location information from tweets. They use named entity recognition, as well as a
concept vocabulary-based method to identify words that denote a location name from
tweets. For disambiguating place names, they use a machine learning method, an
inverted index search on World Gazetteer data, and search using the Google Maps
API. Extracting location names from tweets is a first step to building our place name-
based classifier, and disambiguation methods for extracting place names, as described
in Agarwal et al. [2012], are complementary to our work.

Our goal is to estimate the home location of a Twitter user. Location extraction
from tweets is a different problem from estimating the home location of Twitter users.
However, some of the methods for matching tweets to a geo-location can be used for
feature extraction for home location estimation from tweets.

2.3. Location Estimation without Using Tweets Content

Efforts have been made to estimate the location of Twitter users using location informa-
tion provided in the Twitter profile, geo-tagged tweets, and social network information.

A number of works make use of location information submitted by users in their
Twitter profiles. For example, Kulshrestha et al. [2012] have used location information
reported in Twitter user’s profile and multiple map APIs to find the locations of users
at country level for further analysis. They compared location information provided by
multiple map APIs to reduce inference errors. In this way, they were able to infer the
country-level location of 23.5% of users with 94.7% accuracy. However, these techniques
of location inference rely on the users themselves, whereas a large number of such users
either enter incorrect nongeographic information in the location field of their profile or
leave the field empty (34%, as reported by Hecht et al. [2011]). In addition, map APIs
do not always return the correct result.

Recently, Sadilek et al. [2012] described a location estimation method that can infer
the most likely location of people for a given time period from the geo-location informa-
tion of their friends for that time period. The assumption is that location information
of friends is shared through GPS-enabled devices or location-based services such as
Foursquare. They have implemented both a supervised and unsupervised version of
their algorithm. In their supervised approach, previously visited locations of users are
also given to the prediction algorithm, in addition to their friends’ locations. In the un-
supervised approach, such information (user’s previous visited locations) is not given
to the algorithm. For the unsupervised approach, they have demonstrated that when
a person has at least two geo-active friends for whom geo-information of tweets is
available, the location of the person can be predicted at the neighborhood level (e.g., a
Foursquare venue) with 47% accuracy using their algorithm, and when nine geo-active
friends’ information is available, location can be predicted with 57% accuracy. These ac-
curacies are higher with a supervised approach (77% with two friends’ information and
84% for nine friends’ information). However, their approach is dependent on one’s geo-
active friends (who post messages with geo-location at least 100 times a month) and the
availability of geo-location information for such friends for a given period. In addition,
their location prediction algorithm also assumes that a set of locations (e.g., Foursquare
venues) are frequently visited by users. These assumptions may not be valid for many
users who do not have such friends or do not frequently visit such popular locations.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 3, Article 47, Publication date: July 2014.
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We believe that location detection using Twitter content, Twitter profile information,
geo-active users’ information, and social networks are complementary efforts. Such
approaches may be combined together to further increase accuracy, perhaps using the
ensemble approach we introduce here.

2.4. Location Estimation from Other Social Media

Lieberman and Lin [2009] used geo-pages in Wikipedia to infer the locations (as granu-
lar as small geographic regions) of their contributors. Popescu and Grefenstette predict
the home country of Flickr users by analyzing manual annotations with place names
and geo-tags [Popescu et al. 2010]. In contrast, our location inference algorithm does
not use manual annotations or geo-tags, although geo-tags might be employed in the
future to improve the accuracy of the algorithm. Backstrom et al. [2010] used the social
network structure of Facebook to predict the location of Facebook users. We do not
currently use social network features in our algorithm, but these could be incorporated
in the future.

Recently, Chang et al. [2011] described a system that can predict places where users
will go next based on their previous check-ins with the Facebook Places service. Along
a similar line, Gao et al. [2012] has explored the pattern of user check-ins on location-
based social networks such as Foursquare and built a predictive model for users’ check-
in behaviors. Their main finding is that users with friendship tend to go to similar
locations than do those without, and users’ visits follow a power-law distribution, which
means they tend to visit few places many times and many other places few times. Cho
et al. [2011] describes modeling user location from the location-based social network
Gowalla.5 They have developed a periodic and social mobility model for predicting the
mobility of users (e.g., when user is at “home” and when user is at “work”). Their
result suggests that there is a strong periodic behavior throughout certain periods
of the day alternating between primary (e.g., “home”) and secondary (e.g., “work”)
locations on weekdays and “home” and social network-driven locations on weekends.
Their work uses the check-in history of users’ and their friends from a location-based
social network. Their focus is not to detect the home location of Twitter users but rather
to detect their mobility patterns.

It is uncommon for us to have access to exact location information for a user, although
our algorithm can use it if available (e.g., a tweet generated by Foursquare that notes
the user’s exact location). Instead, our algorithm must rely on a variety of features
collected from users’ recent tweets. Furthermore, our focus is to predict users’ home
locations instead of their potential future locations.

Cranshaw et al. [2012] has described a clustering-based model to understand the
structure and composition of a city based on the social media its residents gener-
ate through location-based services such as Foursquare. Their method can discover
distinctly characterized areas of a city (such as neighborhoods) by using the spatial
proximity of venues that users check in to and the social proximity of users. A num-
ber of researchers have used named entity detection with a geographical gazetteer for
location estimation from blog posts [Fink et al. 2009] and web pages [Amitey et al.
2004; Zong et al. 2005]. We also identify names of cities and states from tweets using
the USGS gazetteer and use them to build statistical models. As we discuss later, we
have found that using these terms alone does not give the best accuracy. Adams et al.
[2012] have described a method to estimate geographic regions from unstructured,
non-geo-referenced text by combining natural language processing, geo-statistics, and
a data-driven bottom-up semantics. They use the hypothesis that natural language
expressions are geo-indicative even without explicit reference to place names (e.g.,

5http://www.gowalla.com.
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Fig. 1. Cities in our dataset.

manufacturing, traffic, and employment are more indicative of a larger city). They
have applied their algorithm on large text documents, such as blogs and Wikipedia
articles, where there are only a few coherent topics. This approach may not work for
tweets, which are noisy and do not have a coherent topics.

3. DATASET

From July 2011 to August 2011, we collected tweets from the top 100 cities in the
United States by population6 (see Figure 1). First, we obtained a bounding box in terms
of latitude and longitude for each city using Google’s geo-coding API.7 We recorded
tweets using the geo-tag filter option of Twitter’s streaming API8 for each of those
bounding boxes until we received tweets from 100 unique users in each location. The
city corresponding to the bounding box where the user was discovered was assumed
to be the ground truth home location for that user. We discuss the validity of this
assumption later in the article.

We then invoked the Twitter REST API9 to collect each user’s 200 most recent
tweets (less if that user had fewer than 200 total tweets). Some users were discovered
to have private profiles, and we eliminated them from our dataset. Our final data set
contains 1,524,522 tweets generated by 9,551 users.10 A total of 100,599 tweets (6.6%)
were generated by Foursquare and contained URLs that could be accessed to retrieve
exact location descriptions. A total of 289,650 tweets (19%) contained references to
cities or states mentioned in the USGS gazetteer11; however, this number also includes
ambiguous matches (e.g., the word “black” being matched as a town in Alabama) and
those Foursquare tweets that also often contain textual references to cities or states.
We divided the entire dataset into training (90%) and testing (10%) sets for 10-fold
cross-validation.

4. LOCATION ESTIMATION: PROBLEM STATEMENT

For this article, we denote the location of a user u at granularity g as Lg(u), where

Lg(u) = f (Su, Tu, E).

6http://en.wikipedia.org/wiki/List_of_regions_of_the_United_States.
7http://code.google.com/apis/maps/documentation/geocoding/.
8http://dev.twitter.com/pages/streaming_api.
9http://en.wikipedia.org/wiki/List_of_United_States_cities_by_population.
10This dataset is available through the ICWSM Dataset Sharing Service at http://icwsm.cs.mcgill.ca/.
11http://www.census.gov/geo/www/gazetteer/places2k.html..
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Thus, Lg(u) is a function of Su, Tu, and E. Su represents the set of tweets for that user, Tu
represents the set of creation times of those tweets, and E represents the set of external
location-based knowledge available from a location-based service, such as Foursquare,
or a dictionary, such as the USGS gazetteer. In this equation, the desired granularity
can be at any level, including country, state, geographic region, time zone, city, street, or
landmark. The parameter E is optional because external knowledge may not always be
available. For all granularities except time zone, Su is mandatory. Time zone estimation
is possible with only Tu; however Su and E can also be used for estimation if they are
available. In this article, without loss of generality, we present location estimation for
the following granularities: city, time zone, state, and geographic region.

5. LOCATION CLASSIFICATION APPROACHES

Here we describe each of our location classifiers in detail.

5.1. Content-based Statistical Classifiers

We use three statistical location classifiers that are each trained from different terms
extracted from S, the set of all users’ tweets. The classifiers and their associated terms
are:

• Words: all words contained within S
• Hashtags: all hashtags contained within S
• Place Names: all city and state location names within S, as identified via a geo-

graphical gazetteer

These classifiers can be created for any level of location granularity for which
we have ground truth. Each user in our training dataset corresponds to a training
example, in which features are derived from his or her tweet contents. The output is a
trained model with the number of classes equal to the total number of locations of that
granularity in our training dataset (e.g., total number of cities). All of these classifiers
use the same approaches for feature selection, training, and classification, which are
described in the next sections (5.1.1 and 5.1.2).

5.1.1. Feature Extraction. First, we tokenize all tweets in the training dataset, which
removes punctuation and other whitespace. All URLs and most tokens containing
special characters are then removed, except for tokens that represent hashtags and
start with # (e.g., the token #Portland in Table I).

Once the tokens have been extracted, different processes are used to extract terms
for each classifier. For the Words classifier, we use as terms all tokens that are not
identified as stop words or marked as nouns by a part-of-speech tagger. Stop words
are defined by a standard list of 319 stop words, and parts of speech are classified
using Open NLP.12 We do not use adjectives, verbs, prepositions, and the like because
they are often generic and may not discriminate among locations. For the Hashtags
classifier, we use as terms all tokens that start with the # symbol. For the Place Names
classifier, we generate a set of terms that appear in the tweets and match names of
US cities and states from the USGS gazetteer. Not all city or state names are a single
word, so we first generate bi- and tri-grams from the ordered list of tokens. We then
compare all uni-, bi-, and tri-grams to the list of city and state names. Any matching
names are used as terms. Note that some common words are used as the names of
cities in the United States (e.g., “eagle” is a town in Colorado, and “black” is a town in
Alabama). We do not currently attempt to distinguish between uses of common words
to refer to locations compared to their usual meanings.

12http://opennlp.sourceforge.net/projects.html.
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Table I. Example Tweets in Our Dataset

Tweets
1. Foldin the biggest pile of clothes EVER!!
2. Let’s cruise on today (@ House of Ambrose) http://4sq.com/m1F3R5
3. #Portland It’s chocolate peanut butter!
4. Let’s Go Red Sox!!!
5. Another sunny day in California!

Table II. Examples of Local and Nonlocal Terms with Their Conditional
Distributions

Term Location Type Location Conditional Distribution Local?
Grass City Houston:0.31 No

Boston:0.23
Fresno:0.16
Tulsa:0.15

Pittsburgh:0.15
Vegas Time Zone Pacific: 0.8588 Yes

Eastern: 0.0705
Mountain:0.0470
Central: 0.0235

Once we have the set of terms for a particular classifier, it is helpful to identify terms
that are particularly discriminative (or “local”) for a location (also discussed by Cheng
et al. [2010]). For example, we found that the term “Red Sox”, extracted from the fourth
tweet in Table I, is local to the city “Boston.” We use several heuristics to select local
terms. First, we compute the frequency of the selected terms for each location and
the number of people in that location who have used them in their tweets. We keep
the terms that are present in the tweets of at least K% people in that location, where
K is an empirically selected parameter. We experimented with different values and
selected K = 5. This process also eliminates possible noisy terms. Next, we compute
the average and maximum conditional probabilities of locations for each term and test
if the difference between these probabilities is above a threshold, Tdiff. If this test is
successful, we then further test if the maximum conditional probability is above a
threshold, Tmax. This ensures that the term has high bias toward a particular location.
Applying these heuristics gives us localized terms and eliminates many terms with
uniform distribution across all locations. We set these thresholds empirically at Tdi f f =
0.1 and Tmax = 0.5. Table II shows a few terms and their conditional distributions.
These local terms become features for our statistical models.

5.1.2. Training and Classification. Once the features (i.e., local terms from the previous
step) are extracted for each classifier, we build statistical models using standard ma-
chine learning approaches. We have tried a number of classifiers from WEKA,13 such
as Naı̈ve Bayes, Naı̈ve Bayes Multimonial, SMO (an SVM implementation), J48, PART,
and Random Forest. We found that Naı̈ve Bayes Multimonial, SMO, and J48 classi-
fiers produced reasonable classification results for our dataset; we empirically selected
Naı̈ve Bayes Multimonial.

5.2. Content-based Heuristic Classifiers

We have also built two heuristic classifiers that predict users’ locations at different
granularities. The local-place heuristic classifier is specific to classifying city- or

13http://www.cs.waikato.ac.nz/ml/weka/.
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state-level location. The heuristic is that a user would mention his or her home city
or state in tweets more often than any other cities or states. For every city or state in
our training corpus, we compute the frequency of its occurrences in user’s tweets and
use this as the matching score of that user with that city or state. The city or state
with the highest matching score is predicted as the location classification for that
user.

The visit-history heuristic classifier is applicable to location classification at all gran-
ularities. The heuristic is that a user would visit places in his home location more often
than places in other locations. In order to retrieve a user’s visit history, we look for
URLs generated by the Foursquare location check-in service in their tweets (e.g., the
second tweet in Table I contains one such URL), retrieve venue location information
from those URLs (e.g., city, state) using the Foursquare API, and build a frequency-
based statistic for the visited locations at the desired level of granularity. Foursquare
venues typically contain detailed low-level location information, so a location value
at the correct level of granularity can usually be determined. Links that cannot be
resolved to a venue are discarded. The location with the highest frequency is returned
as the location classification for the user.

5.3. Behavior-based Time Zone Classifier

We hypothesize that users tweeting behavior follows certain patterns. For example,
certain periods of the day may have more tweeting activity than others. However,
such behavior is also dependent on users’ time zones when we consider a specific
time (e.g., GMT+6). As an example, consider 8 p.m. Eastern time. A user who lives
in New York, in the Eastern time zone, is more likely to be tweeting (since he or
she may already have returned from work) at that time in comparison to a user who
lives in California (for whom it is 5 p.m., and he or she may be still be at work).
When we compare tweet creation times for users in different time zones, we hope
to discover temporal shifts in tweeting activity. Figure 2(a) shows the average tweet
volume per user for each hour of the day in the four US time zones. All tweet creation
times are recorded and shown in GMT. From this graph, it can be seen that tweet
behavior throughout the day has the same shape in each time zone and that there is
a noticeable temporal offset that a classifier should be able to leverage to predict the
time zone for a user. To construct the classifier, we first divide the day into equal-sized
time slots of a prespecified duration. Each time slot represents a feature dimension for
the classifier. We tried different sizes for time slots (e.g., 60, 30, 15, 5, and 1 minutes).
We empirically chose 1 minute duration time slots for our classifier. For each time
slot, we count the number of tweets sent during that time slot for each user in our
training set. Because total tweet frequency in a day varies across users, we normalize
the number of tweets in a time slot for a user by the total number of tweets for that
user.

Figure 2(a) shows that the differences between tweet volumes in different time zones
are not uniform throughout the day. For example, there is little difference in tweet
volume across all of the time zones at hour 11. On the other hand, there is a large
difference in tweet volume across all of the time zones at hour 3 or hour 7. Figure 2(b)
shows variations of standard deviations of tweet volumes across time zones. These
variations show that different times of the day are more discriminative. For example,
hour 7 seems to have high variation of standard deviations of average tweet volumes
from different time zones. Thus, this time slot is quite discriminative to differentiate
time zones by their average tweet volumes. We capture this variation in our model by
weighting the feature values of each time slot using the standard deviation for that
time slot. To train the classifier, we use the Naı̈ve Bayes classifier from WEKA.
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Fig. 2. (a) Variations of average tweet volume/user across time zones for different hours of the day; (b)
variations of standard deviations of average tweet volumes across time zones for different hours of day.

6. ENSEMBLE OF LOCATION CLASSIFIERS

We also create an ensemble of our classifiers to improve accuracy. In machine learning,
multiple classifiers are often combined in an ensemble [Dietterich et al. 2010; Rokach
et al. 2010], which is often more accurate than creating an individual classifier in the
ensemble. Among the ensemble methods, majority voting is the simplest, in which
the final classification is the class that receives the most votes from individual clas-
sifiers [Rokach et al. 2010]. Bagging is another approach, one based on resampling
the training dataset to learn individual classifiers and then using majority vote to
combine classifications [Breiman et al. 1996]. More complex approaches are also used,
such as boosting, in which each classifier receives a weight that is learned based on
classifier performance [Freund et al. 1996]. Note that, in this approach, the weights
are learned once and then remain static when the trained classifier is used to classify
new instances. There is also the dynamically weighted ensemble method, which aggre-
gates the outputs of multiple classifiers using a weighted combination in which each
weight is based on the certainty of the respective classifier for classifying that instance
[Jiménez et al. 1998]. Using this method, the classifier weights change dynamically
based on the properties of the instance being classified.
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In this work, we use a dynamically weighted ensemble method to create an ensemble
of the statistical and heuristic classifiers, for two reasons. First, we wanted to choose an
ensemble method that would account for the differences in the available information
for each user. For example, some users may have many Foursquare check-in tweets,
which favors the visit history classifier, whereas others may use many location words,
favoring the local term and place name classifiers. The dynamically weighted ensem-
ble method weights each classifier differently for each instance based on a confidence
estimate or certainty of that classifier for classifying that instance (different from fixed
or static weighting) [Jiménez et al. 1998]. Second, we wanted to choose an ensemble
method that would allow us to include both the statistical and heuristic classifiers.
Several widely known ensemble methods, such as bagging and boosting, require mul-
tiple iterations of resampling and retraining the component classifiers, which is only
possible for statistical classifiers.

Here, we introduce a metric, Classification Strength, which we use in our dynamically
weighted ensemble implementation. Let T denote the set of terms from user’s tweets
that would be considered for classification using a particular classifier. For statistical
classifiers, the matching location set is the set of locations in our trained model con-
taining terms from T. For the local-place classifier, this set contains locations from our
dataset that match content in the user’s tweets. For the visit-history classifier, this set
contains locations from the user’s visit history that appear in our dataset. The Classifi-
cation Strength for a user is the inverse of the number of possible matching locations in
the matching location set. Thus, if more locations are contained in the matching loca-
tion set, the classification strength will be lower and vice versa. As a concrete example,
suppose that a user’s tweets contained words that match to five different cities, thus
producing the matching location set: {New York, Los Angeles, Chicago, Dallas, Boston}.
The classification strength for this set is 1/5 = 0.2.

The classification strength of a classifier for a particular instance expresses the
discriminative ability of that classifier for classifying that instance. For our imple-
mentation, the classification strength of a classifier for a particular instance is used
as the weight of that classifier in the ensemble for classifying that instance. For the
behavior-based time zone classifier, we use the confidence value of the classification for
a particular instance as its weight.

To validate that our dynamically weighted ensemble approach is correct, we also
created ensembles using two other techniques: majority voting [Rokach et al. 2010]
and multiclass AdaBoost [Zhu et al. 2009], which is an extension from the original
AdaBoost algorithm [Freund et al. 1996]. As discussed previously, it was not possible
to include the heuristic classifiers in the ensemble using AdaBoost, so this ensemble
uses only the statistical classifiers. For completeness, we constructed two majority
voting ensembles, one using only the statistical classifiers and another using both
the statistical and heuristic classifiers. A comparison of the results of these different
methods is presented later in the Experiments section.

7. HIERARCHICAL ENSEMBLE OF CLASSIFIERS

For location classification at a smaller granularity, such as city level, classifiers have
to discriminate among many locations to compute the prediction. To simplify this
task, a large classification problem may be divided into multiple smaller classification
problems where classifiers are organized in a hierarchy. The initial classifier in such a
system will compute a high-level classification, such as for time zone, and lower level
classifiers will be trained for each of the classes of the high-level classifier. The low-level
classifier that is used for a particular instance is determined by the classification of the
initial classifier. Such a hierarchical classification scheme has been used to improve
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Fig. 3. Different regional breakdowns used in our region-based hierarchical classifiers: (a) four census
regions and (b) 10 standard federal regions.

classification performance in a number of fields such as web, biology, and document
analysis [Dumais et al. 2000; Sun et al. 2001].

In our work, we developed location predictors using a two-level hierarchy. We exper-
imented with several options as the first level of hierarchy: time zone, state, and two
variations of geographic regions. In all cases, city is classified at the second level.

7.1. Time Zone Hierarchy

When time zone is the first level of hierarchy, we classify between only the four US time
zones (Eastern, Central, Mountain, and Pacific) because cities in our training corpus
were restricted to those time zones. We first trained an ensemble time zone classifier
from our training corpus using all content-based classifiers and the behavior-based
classifier. City classifiers were trained for each time zone, where each classifier was
limited to predicting only the cities in its time zone and trained with only examples
from that time zone.

7.2. State Hierarchy

In this classification scheme, we use US states as the first level of the hierarchy. The
ensemble state classifier contains only our content-based classifiers, and city classifiers
are built for all states that contain more than one city in our dataset.

7.3. Region Hierarchy

In this classification, we use US geographical regions as the first level of hierarchy.
We tried two different regional breakdowns of the United States: census and federal14

(see Figure 3 for regional breakdowns). The US Census Bureau divides the United
States into four regions (Northeast, Midwest, South, and West). The standard Federal
Regions were established by the Office of Management and Budget and is composed of
10 regions each containing 4 to 6 adjacent states. The regional hierarchical classifiers
are built using the same basic approach as for the state hierarchical classifiers.

8. EXPERIMENTS

We conducted many experiments to evaluate different aspects of our algorithms. Let the
total number of users in our test set be n. When this is given to our location predictor,
only n1 predictions are correct. Hence, we define accuracy of classification as n1/n.

8.1. Individual Classifier Performance

Table III shows the comparative performance of the individual location classifiers.
The Place Name statistical classifier gives the best accuracy. The high accuracy of the
place name-based classifier may be explained by the fact that many users send tweets

14http://en.wikipedia.org/wiki/List_of_regions_of_the_United_States.
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Table III. City-Level Location Prediction Accuracy Comparison among Different Classifiers

Word Hashtag Place name Local-place Visit-history
Accuracy 0.34 0.17 0.54 0.5 0.13

Table IV. City-Level Location Prediction Accuracy Comparison
for Ensemble of Statistical Classifiers

Majority Voting 0.51
Boosting 0.55
Dynamically Weighted Ensemble 0.56

Table V. City-Level Location Prediction Accuracy Comparison
for Ensemble of Statistical and Heuristics Classifiers

Majority Voting 0.55
Dynamically Weighted Ensemble 0.58

containing names of places (cities and states in our system), and those place names tend
to have bias toward users’ home cities. The low accuracy of the visit-history classifier
is due to the sparseness of the needed Foursquare URLs in our dataset (only 6.6% of
tweets in our dataset contained these URLs, and some of these could not resolved to a
venue).

8.2. Ensemble Classifier Performance

We evaluate our ensemble classifier approach by comparing three alternative designs:

1. A single statistical classifier where words, hashtags, and place names are used
together as features

2. An ensemble of only the statistical classifiers for words, hashtags, and place names
3. An ensemble of the statistical and heuristic classifiers

Table IV shows that boosting outperformed majority voting when we constructed an
ensemble of only the statistical classifiers; however, the dynamically weighted ensemble
performed slightly better than boosting. Table V shows that the dynamically weighted
ensemble slightly outperformed majority voting when we constructed an ensemble of
both the statistical and heuristic classifiers.

Table VI shows the best performance of each of our alternative designs. Observe
that using an ensemble of the statistical classifiers yields higher performance than a
single statistical classifier that uses the same features. This is because each feature
category has its own unique discriminative ability for location classification, and, in a
single classifier, each is weighted equally. When a separate classifier for each feature
category is constructed, the different discriminating abilities of each classifier can be
weighted appropriately for each instance, resulting in better classification performance.
The performance of the ensemble of statistical and heuristic classifiers is superior to
the other two options, suggesting that the heuristic classifiers add additional discrim-
inative power to the ensemble. The remaining results in this article were generated
using this ensemble design.

8.3. Classification Performance at Multiple Location Granularities

Table VII shows the performance of our content-based ensemble classifiers for predict-
ing location at the level of city, time zone, state, and geographic region. Performance is
generally higher for classifiers that discriminate between fewer classes.

Figure 4 shows the performance of the behavior-based time zone classifier for various
time slot sizes. Performance improves when time slots are weighted, and we also see
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Table VI. Effect of Ensemble for City-Level Location Prediction

Single Statistical
Classifier

Ensemble of Statistical
Classifiers

Ensemble of Statistical
and Heuristics Classifiers

Accuracy 0.38 0.56 0.58

Table VII. Content-Based Location Prediction Performance

City State Time zone Region (federal) Region (census)
Accuracy 0.58 0.66 0.73 0.69 0.71

Fig. 4. Time zone classification using tweet-behavior.

an improvement in performance when the time slot size is reduced. Performance seems
to level off at a slot size of 1 minute; we use that time slot size with weighting in the
remainder of this article.

Table VIII shows that we get the best time zone classification when the behavior-
based classifier is combined with content-based classifiers in an ensemble (using the
dynamically weighted ensemble approach).

8.4. Performance of Hierarchical Location Estimator

Table IX shows the performance of different hierarchical classification approaches for
city location estimation. Note that the performance of all hierarchical classifiers is su-
perior to the single-level ensemble for city prediction. The time zone-based hierarchical
classifier performs the best, which is largely due to the higher accuracy of predicting
time zones compared to states or regions.

8.5. Comparison with Existing Approach

We compare the performance of our algorithm with that of Cheng et al. [2010], the
previous best performing city-level location classification approach, using their dataset.
We obtained Cheng et al. [2010]’s dataset through correspondence with the authors.

Their dataset consists of separate training and test sets. The training set, which con-
tains 4,124,960 tweets from 130,689 users, consists of users who specified their location
in their profile using a valid city–state pair as verified using the USGS gazetteer. The
test dataset contains 5,156,047 tweets from 5,190 users. These users reported their
location in their profile as a string representing a latitude/longitude coordinate, pre-
sumably as set by their smartphones. The training dataset contains only eight tweets
containing Foursquare URLs, and the test dataset contains 10,956 such tweets, repre-
senting 0.2% of the tweets in that dataset.
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Table VIII. Time Zone Prediction Accuracy

Content Tweet-behavior Combined
Accuracy 0.73 0.76 0.78

Table IX. Performance of Hierarchical City Location Estimator

Using time zone
hierarchy

Using
State-hierarchy

Using
region(federal)

hierarchy

Using region
(census) hierarchy

Accuracy 0.64 0.59 0.6 0.62

For comparison, we implemented their algorithm and used multiple accuracy met-
rics: exact accuracy and their own distance-based relaxed accuracy metric [Cheng et al.
2010]. The relaxed accuracy metric counts a location prediction as correct if it is within
X miles of the actual location of the user. Figure 5 shows the performance of both
algorithms: our hierarchical city location predictor with time zone hierarchy (our best
algorithm for city prediction) and our implementation of Cheng et al.’s algorithm. In
particular, Figure 5(a) shows the accuracy comparison when we considered different
subsets of data from the original dataset. For each subset, we first fixed N, which is
the number of cities (e.g., N = 500). Then, we randomly selected N cities from the
list of cities in the dataset. Then, we only included tweets from users who reported
those cities as their locations in our training and test set. We tried different values
of N, such as 100, 200, 500, 1,000, and 4,827 (total number of cities in the original
dataset). We observe that our algorithm outperforms Cheng et al.’s algorithm in all
cases. Figure 5(b) shows accuracy comparison when we fixed the total number of cities
N = 4,827 but varied the error distance. We considered different error distances, such
as 0, 10, 50, 100, and 1,000. Our algorithm outperforms Cheng et al.’s algorithm in
all cases. Because Cheng et al. did not use any external knowledge (such as a geo-
graphic gazetteer), we also compare the performance of our algorithm without the use
of any external knowledge (by removing the place-name and visit-history classifiers
from the ensemble). Even without external knowledge, our algorithm still has superior
performance.

8.6. Effect of Explicit Location Reference

We were curious about the impact of the availability of explicit location references,
such as place name mentions and the presence of Foursquare URLs, on classification
performance. If the impact is substantial, then users can effectively mask their location
by never mentioning place names. To test this, we computed the performance of just
the word and hashtag statistical classifiers in an ensemble. We found that locations
are still predictable, but accuracy was reduced (the city-level location predictor was
able to predict with 0.34 accuracy without hierarchy and 0.4 accuracy with time zone
hierarchy). This suggests that users may be able to partially mask their location by
being careful not to mention location names in their tweets. It may also be possible to
create Twitter clients that detect location names and either warn users before posting
the tweet or automatically modify the tweet to remove or obscure the location name.

8.7. Real World Usage Issues

Several factors might affect the performance of our algorithm in real-world usage.
First, it may not be possible to collect 200 tweets for every user, especially when
tweets are collected using stream-based methods. How does accuracy change as the
number of tweets for a user is decreased? We explored this scenario by capping the
number of tweets for each user and found, unsurprisingly, that performance drops
with the number of tweets per user. Figure 6 shows the result for city classification
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Fig. 5. Comparison of our hierarchical city location predictor (with time zone hierarchy) with the best
available algorithm.

Fig. 6. Accuracy variation with decreasing total number of tweets per user.
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Table X. Percentage of Users and Prediction
Accuracies for Different Average Geo-Distance (Miles)

between Tweets

0–10 11–100 101–500 500+
% of users 0.77 0.15 0.07 0.01
Accuracy 0.66 0.61 0.52 0.5

Table XI. Percentage of Users and Prediction
Accuracies for Different Max Geo-Distance (Miles)

between Tweets

0–10 11–100 101–500 500+
% of users 0.31 0.39 0.09 0.21
Accuracy 0.69 0.68 0.58 0.52

using a hierarchical ensemble based on time zone. Performance generally drops with
decreasing tweets because, with fewer tweets, our classifiers lack enough features to
accurately predict locations. We also computed the time required to make a location
prediction and found that our location predictor can compute the prediction for a user in
less than a second (670 ms to make a prediction when 200 tweets/user is used and only
200 ms to make a prediction when 50 tweets/user is used). This is likely less than the
time needed to retrieve a user’s most recent tweets from Twitter, and it suggests that
our algorithm should be applicable in settings when reasonably accurate predictions
are needed from few tweets and within a short time.

9. MOVEMENT AND LOCATION PREDICTION

In our work so far, we have made an assumption that users are from the location in
which we initially detected them and that they did not change locations during the
period of the 200 tweets that we recorded for each user. Obviously, this assumption is
unlikely to hold for all 9,551 users, and it is important to understand the impact of this
assumption on the results of our algorithm. In addition, if it is possible to identify those
users who have traveled, then we can treat them separately and potentially improve
classification performance for all users.

9.1. Effect of Movement on Location Prediction

To test our assumption about the location of users and understand its impact on our
results, we analyzed the geographical distribution of the geo-tagged tweets in our
corpus (note that geo-tags are not used in any of our prediction algorithms, although
around 65% of the tweets in our dataset are geo-tagged). Tables X and XI show that
most of our users stayed within 10 miles of the location in which we found them across
all of their historical 200 tweets; location prediction accuracy is also higher for those
users. This suggests that our ground truth assumption—that users are at home in the
location where we identified them—is correct for most of our users.

9.2. Detecting Traveling Users

Based on the results of the previous subsection, it seems that a classifier for traveling
users could be added to our location prediction algorithm as a prefiltering step to
eliminate traveling users. We attempt to build such a binary classifier from our data.

To train the classifier, we use the tweets with their geo-tagged information. A user
was labeled as traveling if his or her maximum geo distance between tweets was above
100 miles and not-traveling otherwise. Like our location classification approach, we
used words, place names, and hashtags as features. Similar to the feature extraction
method described in Section 5, we tokenize all tweets in the training set to remove
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Table XII. Location Prediction Performance when Users Classified as Traveling Were Eliminated

City State Time zone Region (federal) Region (census)
Accuracy 0.61 0.70 0.80 0.72 0.73

Table XIII. Hierarchical Location Prediction Performance when Users Classified as Traveling Were Eliminated

Using time zone
hierarchy Using state hierarchy

Using region
(federal) hierarchy

Using region (census)
hierarchy

Accuracy 0.68 0.62 0.63 0.64

punctuation, white spaces, URLs, and tokens containing special characters, except
for tokens that represent hashtags. We also apply stop word elimination and part-
of-speech analysis using OpenNLP to identify words (marked as nouns by a part-of-
speech tagger). Hashtags are all tokens starting with the # symbol, and place names are
identified using the USGS gazetteer, using the same approach described in Section 5. In
addition, we used time-based features that were calculated as the standard deviation
of tweeting times in a particular slot of the day (24 slots for the entire day, 1 hour for
each slot).

We tried with several classification algorithms from WEKA, such as SMO, Naı̈ve
Bayes, Logistic Regression, J48, and Random Forest. We selected SMO, which outper-
formed other classifiers and produced 75% F1 with 10-fold cross-validation.

9.3. Improving Location Prediction using Traveling Users Detection

We used the result of this classification to eliminate traveling users from our test
set, which resulted in improvements in location prediction accuracy (see Tables XII
and XIII). In the future, we plan to improve the performance of our traveling user
prediction algorithm and use that to further improve the location prediction accuracies
at different granularities.

10. CONCLUSION

In this article, we have presented a hierarchical ensemble algorithm for predicting
the home location of Twitter users at different granularities. Our algorithm uses a
variety of different features, leverages domain knowledge, and combines statistical and
heuristics classifications. Experimental performance demonstrates that our algorithm
achieves higher performance than any previous algorithms for predicting the locations
of Twitter users. We identify several avenues of future research. First, we are interested
in applying our method to predict location at even smaller granularities, such as at the
neighborhood level. Toward that, we plan to incorporate more domain knowledge in
our location prediction models, such as a landmark database.15 Along the same lines,
it would be interesting to explore the possibilities of predicting the location of each
message. Second, we plan to investigate further on detecting traveling users and use
that to improve the accuracies of our location classifiers. Third, we would like to support
incremental updates of our models for better integration with streaming analytics
applications. Finally, we hope to integrate our algorithm into various applications to
explore its usefulness in real-world deployments.

REFERENCES

Benjamin Adams and Krzysztof Janowicz. 2012. On the geo-indicativeness of non-georeferenced text. In
Proceedings of the 6th International Conference on Weblogs and Social Media (ICWSM’12). AAAI Press,
375–378.

15http://poidirectory.com/poifiles/united_states/.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 3, Article 47, Publication date: July 2014.

http://poidirectory.com/poifiles/united_states/.


47:20 J. Mahmud et al.

Puneet Agarwal, Rajgopal Vaithiyanathan, Saurabh Sharma, and Gautam Shroff. 2012. Catching the long-
tail: Extracting local news events from Twitter. In Proceedings of the 6th International Conference on
Weblogs and Social Media (ICWSM’12), AAAI Press, 379–382.

Einat Amitay, Nadav Har’El, Ron Sivan, and Aya Soffer. 2004. Web-a-where: Geotagging web content. In
Proceedings of the 27th Annual International ACM SIGIR Conference (SIGIR’04). ACM, 273–280.

Lars Backstrom, Eric Sun, and Cameron Marlow. 2010. Find me if you can: Improving geographical prediction
with social and spatial proximity. In Proceedings of the 19th International World Wide Web Conference
(WWW’10). ACM Press, 61–70

Michael S. Bernstein, Bongwon Suh, Lichan Hong, Jilin Chen, Sanjay Kairam, and Ed H. Chi. 2010. Eddi:
interactive topic-based browsing of social status streams. In Proceedings of the 23nd Annual ACM
Symposium on User Interface Software and Technology (UIST’10). ACM, 303–312.

Leo Breiman. 1996. Bagging predictors. Mach. Learn. 24, 2 (August 1996), 123–140.
Swarup Chandra, Latifur Khan, and Fahad Bin Muhaya. 2011. Estimating Twitter user location using social-

interactions and content based approach. In Proceedings of IEEE SocialCom/PASSAT. IEEE Computer
Society, 838–843.

Jonathan Chang and Eric Sun. 2011. Location3: How users share and respond to location–based data on
social networking sites. In Proceedings of the 5th International Conference on Weblogs and Social Media
(ICWSM’11), AAAI Press, 74–80.

Hau–wen Chang, Dongwon Lee, Mohammed Eltaher, and Jeongkyu Lee. 2012. @Phillies tweeting from
Philly? Predicting Twitter user locations with spatial word usage. In Proceedings of the 2012 Interna-
tional Conference on Advances in Social Networks Analysis and Mining (ASONAM’12). IEEE Computer
Society, 111–118.

Zhiyuan Cheng, James Caverlee, and Kyumin Lee. 2010. You are where you tweet: A content-based approach
to geo-locating Twitter users. In Proceedings of the 19th ACM International Conference on Information
and Knowledge Management (CIKM’10). ACM, 759–768.

Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and mobility: user movement in location-
based social networks. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’11). ACM, 1082–1090.

Justin Cranshaw, Raz Schwartz, Jason I. Hong, and Norman Sadeh. 2012. The livehoods project: Utilizing
social media to understand the dynamics of a city. In Proceedings of the 6th International Conference on
Weblogs and Social Media (ICWSM’12). AAAI Press, 58–65.

Nilesh Dalvi, Ravi Kumar, and Bo Pang. 2012. Object matching in tweets with spatial models. In Proceedings
of the 5th ACM International Conference on Web Search and Data Mining (WSDM’12). ACM. 43–52.

Thomas G. Dietterich. 2010. Ensemble methods in machine learning. In Proceedings of the International
Workshop on Multiple Classifier Systems. Springer. 1–15.

Susan Dumais and Hao Chen. 2000. Hierarchical classification of Web content. In Proceedings of the 23rd
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’00). ACM, 256–263.

Jacob Eisenstein, Brendan O’Connor, Noah A. Smith, and Eric P. Xing. 2010. A latent variable model for
geographic lexical variation. In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing (EMNLP’10). Association for Computational Linguistics, 1277–1287.

Clay Fink, Christine Piatko, James Mayfield, Tim Finin, and Justin Martineau. 2009. Geolocating blogs
from their textual content. In Proceedings of the AAAI 2009 Spring Symposium on Social Semantic Web:
Where Web 2.0 Meets Web 3.0.

Yoav Freund and Robert E. Schapire. 1996. Experiments with a new boosting algorithm. In Proceedings of
the 13th International Conference in Machine Learning (ICML’96). Morgan Kaufmann, 148–156.

Huiji Gao, Jiliang Tang, and Huan Liu. 2012. Exploring social-historical ties on location-based social net-
works. In Proceedings of the 6th International Conference on Weblogs and Social Media (ICWSM’12).
AAAI Press, 114–121.

Daniel Jimenez. 1998. Dynamically weighted ensemble neural networks for classification. In Proceedings of
International Joint Conference on Neural Networks (IJCNN ’98). 753–756.

Sheila Kinsella, Vanessa Murdock, and Neil O’Hare. 2011. “I’m eating a sandwich in Glasgow”: Modeling
locations with tweets. In Proceedings of the 3rd International Workshop on Search and Mining User-
Generated Contents (SMUC’11). ACM, 61–68.

Juhi Kulshrestha, Farshad Kooti, Ashkan Nikravesh, and Krishna P. Gummadi. 2012. Geographical dissec-
tion of the Twitter network. In Proceedings of the 6th International Conference on Weblogs and Social
Media (ICWSM’12). AAAI Press, 202–209.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 3, Article 47, Publication date: July 2014.



Home Location Identification of Twitter Users 47:21

Brent Hecht, Lichan Hong, Bongwon Suh, and Ed H. Chi. 2011. Tweets from Justin Bieber’s heart: The
dynamics of the location field in user profiles. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI’11). ACM, 237–246.

Vasileios Lampos, Tijl De Bie, and Nello Cristianini. 2010. Flu detector: Tracking epidemics on Twitter.
In Proceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in
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